FNCE 926
Empirical Methods in CF

Lecture 1 — Linear Regression I

Protessor Todd Gormley



‘ Today’s Agenda

m Introduction

= Discussion of Syllabus

= Review of linear regressions




About Me

m PhD from MIT economics
= Undergraduate at Michigan St. Univ.

= Research on bank entry & corporate
topics involving risk and governance



‘ Today’s Agenda

m Introduction... about me

= Discussion of Syllabus

= Review of linear regressions




Course Obijectives

= Provide toolbox & knowledge of cross-
sectional & panel data empirical methods

= Course will have three-pronged approach

Lectures will provide you econometric ztuition
behind each method discussed

Course readings expose you to examples of
these tools being used in recent research

Exercises will force you to use the methods
taught in actual data



Reading Materials [Part 1]

= My lecture notes will be your primary
source for each econometric tool

= But, please read background texts before
lecture [see syllabus for relevant sections]

Angrist & Pischke’s Mostly Harmless. .. book
Roberts & Whited (2010) paper
Greene’s textbook on econometrics

Wooldridge’s textbook on panel data



Reading Materials [Part 2]

= We will also be covering 35+ empirical
papers; obtain these using Econlit or
by going to authors” SSRN websites
for working papers /I've provided links]

Sorry, for copyright reasons, I can’t post
the papers to Canvas...

Just let me know if you have any problem
finding a particular paper



Study Groups

= 3 study groups will do in-class presentations

Choose own members; can change later if need to
Try to split yourself somewhat equally into groups

Choose initial groups during today’s break; first
group presentations will be in next class!

[More about group presentations in a second...]



‘ Course Structure

= Total of 150 possible points

0 In-class exam /50 points]

0 Five data exercises [25 points]

0 In-class presentations/participation /25 points]
0 Research proposal

= Rough draft /75 points]
= Final proposal /35 points|




Exam

= Done 1n last class, April 26

= More details when we get closer..., buta
practice exam 1s already available on Canvas




Data exercises

= Exercises will ask you to download and
manipulate data within Stata

E.g. will need to estimate a triple-diff

To receive credit, you will send me your DO
files; I will then run them on my own dataset to
confirm the coding is correct

More instructions in handouts [which will be
available on Canvas website]



Turning in exercises

= Please upload both DO file and typed

answers to Canvas; 1.e., we won’t be
handing them in during class
They will be graded & returned on Canvas

Deadline to submit is noon

[Canvas tracks when the file is uploaded]



In-class presentations & participation

= In every class (except today), students will
present three papers in second half

0 Each study group does one presentation (this 1s
why there needs to be three study groups)

= But, only one student for each group actually presents

= Rotate the presenter each week; doing this basically
guarantees everyone full participation points

0 Assign papers for next class at end of class

Jall papers are listed in the syllabus]



PowerPoint Presentations /Part 1/

= Should last for 10 min., no more than 12 min.

Summarize [2-3 minutes|
Analytical discussion which should focus on
identification and causality [6-7 minutes|

Conclusion /7 wunute]

= Presentations followed by 5-10 minutes
discussion; students must read all three papers

m See handout on Canvas for more details




PowerPoint Presentations /Part 2/

= Fach student must also type up 2-3 sentence
concern for each paper their group does NOT
present and turn it in at start of class

I will randomly select one after each student
presentation to further facilitate class discussion

Write your comment with one of these goals in mind...

. . by . ”
= Write down your own view of ~biggest concern

= Or, write a concern you think presenter might miss!






Research Proposal

= You will outline a possible empirical paper
that uses tools taught in this course

Rough draft due March 22

Final proposal due exam week, May 3

= If you want, think of this as a jump start on a
possible 27 or 3t year paper

2 See handout on Canvas for more details




 Office Hours & E-mail

= My oftice hours will be...
0 Thursdays, 1:30-3:00 p.m.

0 Or, by appointment

m Office location: 2458 SH-DH

m Email: tgormley@wharton.upenn.edu




‘ Teaching Assistant

m The TA for this course will be...

0 Tetiana Davydiuk
0 davydiuk@wharton.upenn.edu

= She will be grading the exercises and answering
any questions you might have about them

All other questions can be directed to me!




Tentative Schedule

= See syllabus...

= While exam date & final research proposal

deadline are fixed, topics covered and other
case due dates may change slightly if there 1s a
sudden and unexpected class cancellation



‘ How the course is structured...

= We will have a 1-2 lectures per ‘tool’

0 Iwill lecture in first half (except today) on the ‘tool’

0 In the second half of the following class, students will

present papers using that particular tool




‘ Canvas

m https://wharton.instructure.com

= Things available to download

a

g

a

Exercises & solutions /after turned in]
Lecture notes

Handouts that provide more details on what I
expect for presentations & research proposal,
including grading templates

Practice exam

Student presentations /7o help study for exam)]




I.ecture Notes

= [ will provide a copy of lecture notes on
Canvas before the start of each class

I strongly encourage printing these out and

bringing them with you to class!



‘ Structural esttimation lecture

= Prof. Taylor has agreed to give this lecture
m Tuesday, April 19... the usual time




Remaining Items

= 3 hours 1s long! We'll take one 10 minute
break or two 5 minute breaks

= Read rest of syllabus for other details
about the course including:

Class schedule or assigned papers are subject
to change; I'll keep you posted of changes

Limitation of course; I won’t have time to
cover everything you should know, but it will

be a good start



(Questions

» If you have a question, ask! ©

If you’re confused, you’re probably not alone
I don’t mind being interrupted

It I'm going too fast, just let me know

= | may not always have an immediate answer,
but all questions will be answered eventually

= Any questions?



Today’s Agenda

m Introduction

= Discussion of Syllabus

= Review of linear regressions

My expectation is that

you’ve seen most of this Despite trying to do much
before; but it is helpful to of it without math; today’s
review the key ideas that lecture likely to be long
are useful in practice and tedious... (sorry)

(without all the math)



Linear Regression — Owutline

m The CEF and causality (very brief)
m Linear OLS model
m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues

N

We will cover the latter
two 1n the next lecture




‘ Background readings

= Angrist and Pischke
a Sections 3.1-3.2, 3.4.1

= Wooldridge
a Sections 4.1 & 4.2

m Greene
a Chapter 3 and Sections 4.1-4.4, 5.7-5.9, 6.1-6.2




Motivation

= Linear regression is arguably the most popular
modeling approach in corporate finance

Transparent and intuitive
Very robust technique; easy to build on

Even if not interested in causality, it is useful for
describing the data

Given importance, we will spend today &
next lecture reviewing the key ideas



Motivation continued...

= As researchers, we are interested
explaining how the world works

E.g. how are firms’ choices regarding leverage
are explained by their investment opportunities

= Le., if investment opportunities suddenly jumped
for some random reason, how would we expect
firms  leverage to respond on average?

More broadly, how is y explained by x, where
both y and x are random variables?



Linear Regression — Owutline

m The CEF and causality (very brief)

2 Random variables & the CEF
0 Using OLS to learn about the CEF

0 Briefly describe “causality”
= Linear OLS model

m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues




A bit about random wvariables

= With this in mind, it 1s useful know that any
random variable y can be written as

y=E(y|x)te
where (y, x, €) are random variables and E(g|x)=0

E(y|x)is expected value of y given x
In words, y can be broken down into part
‘explained’ by x, E(y|x), and a piece that is

mean independent of x;, €



Conditional expectation function (CEF)

= E(y|x) 1s what we call the CEF, and
it has very desirable properties

0 Natural way to think about relationship
between x and y

0 And, it 1s best predictor of y given x
in a minimum mean-squared error sense

= Le E(y|x) minimizes E[()-m(x))?],where

m(x) can be any function of x.



CEF visually. .

= E(y|x) 1s fixed, but unobservable

y

Our goal is

to learn about
.y the CEF

L I I
Xy Xz X5 X

= Intuition: for any value of x, distribution
of yis centered about E(y|x)




Linear Regression — Owutline

m The CEF and causality (very brief)

2 Random variables & the CEF
0 Using OLS to learn about the CEF

0 Briefly describe “causality”
= Linear OLS model

m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues




Linear regression and the CEF

= If done correctly, a linear regression can
help us uncover what the CEF is

» Consider linear regression model, y=fx+u

0y = dependent variable
0 x = independent variable
0 # = error term (or disturbance)

0 B = slope parameter




‘ Some additional terminology

m Other terms for y... = Other terms for x...
0 Outcome variable 0 Covariate
0 Response variable 0 Control variable
0 Explained variable 0 Explanatory variable
0 Predicted variable 0 Predictor variable
0 Regressand 0 Regressor




‘ Details about y = S x + u

= (5, x, #) are random variables

= (5, x) are observable

= (4, ) are unobservable

0« captures everything that determines y after

accounting for x [This might be a lot of stuff!]

0 We want to estimate [3




Ordinary Least Squares (OLS)

= Simply put, OLS finds the /£ that

minimizes the mean-squared error
[ =argmin = E[(y —bx)’]
b

= Using first order condition: E[x(y- £ x)]=0,
we have B =E(x))/E(x?)

= Note: by definition, the residual from this
regression, J- £ x;, is uncorrelated with x




‘ What great about this linear regressionr

= It can be proved that...

0 Bxis best* linear prediction of y given x

0 Bx is best* linear approximation of E(y| x)
* ‘best’ in terms of minimum mean-squared error
= This 1s quite useful. L.e. even if E(y|x) 1s

nonlinear, the regression gives us the best
linear approximation of it




Linear Regression — Owutline

m The CEF and causality (very brief)

2 Random variables & the CEF
0 Using OLS to learn about the CEF

0 Briefly describe “causality”
m Linear OLS model

m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues




‘ What about causality?

m Need to be careful here...

0 How x explains y, which this regression
helps us understand, is not the same as
learning the causal etfect of x on y

0 For that, we need more assumptions...




‘ The basic assumptions [Part 1]

w Assumption #1: E(n) =0

0 With intercept, this is totally innocuous

0 Just change regression to y = A + Bx + #,
where 0 is the intercept term

Now suppose, E(#)=4£70

a

We could rewrite # = £ + w, where E(w)=0
Then, model becomes y = @ + £) + Bx + w
Intercept is now just d + £, and error, », is mean zero

[.e. Any non-zero mean 1s absorbed by intercept




The basic assumptions [Part 2]

Intuition?

u Assumption #2: E(u|x) = E(u)

In words, average of # (i.e. unexplained portion
of y) does not depend on value of x

This is “conditional mean independence” (CMI)

= True if x and # are independent of each other

= Implies # and x are uncorrelated

This is the key assumption being made
when people make causal inferences



CMI Assumption

= Basically, assumption says you’ve got correct
CEF model for causal effect of xon y

CEF i1s causal if it describes differences in
average outcomes for a change in x

= le.increase in x from values a to 4 is equal to

E(y|x=0-E(y|x=a) [In words?]

Easy to see that this is only true it E(#|x) = E(»)
[This is done on next slide...]



‘ Example of why CMI is needed

= Withmodely = & + Fx + u,

0 E(y|x=a) =a + Ba + B (x| x=a)

0 B(y|x=b) =a + Bb+ E(u|x=b)

0 Thus, E(y|x=b) — E(y| x=a) =
B(b-a) + E(n|x=1) - E(u| x=a)

’

0 This only equals what we think of as the ‘causal
etfect of x changing from ato bit E(u|x=b) =
E(u|x=a)... 1.e. CMI assumption holds




Tangent — CMI versus correlation

= CMI (which implies x and # are
uncorrelated) i1s needed for no bias

[which is a finite sample property]

= But, we only need to assume a zero
correlation between x and # for consistency

[which is a large sample property]

More about bias #s. consistency later; but we
typically care about consistency, which is why
I' 1l often refer to correlations rather than CMI



Is 1t plausible?

= Admittedly, there are many reasons why
this assumption might be violated

Recall, # captures all the factors that affect y
other than x... It will contain a lot!

Let’s just do a couple of examples...



Ex. #1 — Capital structure regression

= Consider following firm-level regression:

Leverage, = o+ BProfitability, +u,

CMI implies average # i1s same for each profitability

Fasy to find a few stories why this isn’ t true...

= #1 — unprofitable firms tend to have higher bankruptcy risk,
which by tradeoff theory, should mean a lower leverage

= #2 — unprofitable firms have accumulated less cash, which
by pecking order means they should have more leverage



EX. #2 o Investment Measure of

investment
opportunities

= Consider following firm-level regression:

Investment, = o+ Q. +u,

CMI implies average # is same tor each Tobin’s QQ
Easy to find a few stories why this isn’t true...

= #1 — Firms with low Q might be in distress & invest less

m  #2 — Firms with high Q might be smaller, younger firms

that have a harder time raising capital to fund investments



Is there a way to test for CMI?

= Let  be the predicted value of y, 1.e.
y=0a+ fx,where & and B are OLS estimates

N

m And, let u# be the residual, i.e. u=y—y

= Can we prove CMI if residuals if E(u )=0
and if # is uncorrelated with x?

Answer: No! By construction these residuals are

mean zero and uncorrelated with x. See earlier
derivation of OLS estimates



Identification police

= What people call the “identification police”
are those that look for violations of CMI

Le. the “police” look for a reason why the
model’s disturbance is correlated with x

= Unfortunately, it’s not that hard...

= Trying to find ways to ensure the CMI
assumption holds and causal inferences can be
made will be a key focus of this course



A side note about " endogeneity

= Many “police” will criticize a model by
saying it has an " endogeneity problem” but
then don’t say anything further...

= But what does it mean to say there is an
“an endogeneity problem’ ?



A side note about " endogeneity

= My view: such vague " endogeneity  critics
suspect something is potentially wrong, but
don’t really know why or how

Don’t let this be you! Be specific about
what the problem is!

= Violations to CMI can be roughly
categorized into three bins... which are?



‘ Three reasons why CMI 1s violated

m Omitted variable bias
m Measurement error bias

= Simultaneity bias

0 We will look at each of these in much
more detail in the “Causality”~ lecture




14 Va4
What “endogenous means to me

= An “endogenous  xis when its value depends
on y (t.e. it determined jointly with y such that
there is simultaneity bias).

But, some use a broader definition to
mean any correlation between x and #

Je.g. Roberts & Whited (2011)]

Because of the confusion, I avoid using
11 . 7 ’
endogeneity ; I’d recommend the same for you

= Ie. Be specific about CMI violation; just say omitted
variable, measurement error, or simultaneity bias



A note about presentations...

= Think about “causality’ when presenting
next week and the following week

I haven’t yet formalized the various reasons for
why “causal” inferences shouldn’t be made; but
I’d like you to take a stab at thinking about it



Linear Regression — Owutline

m The CEF and causality (very brief)
= [Linear OLS model

0 Basic interpretation
0 Rescaling & shifting of variables

0 Incorporating non-linearities

m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues




Interpreting the estimates

= Suppose I estimate the following model of
CEO compensation

salary. = o+ SROE, +u.

Salary for CEO 71s in $000s; ROE is a %

= If you get... #=963.2

B =18.50

What do these coefficients tell us?
Is CMI likely satisfied?



Interpreting the estimates — Answers

salary. =963.2+18.5ROE; +u.

m What do these coefficients tell us?

1 percentage point increase in ROE 1s
associated with $18,500 increase in salary

Average salary for CEO with ROE = 0
was equal to $963,200

= [s CMI likely satistied? Probably not



Linear Regression — Owutline

m The CEF and causality (very brief)
= [Linear OLS model

0 Basic interpretation
0 Rescaling & shifting of variables

0 Incorporating non-linearities

m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues




‘ Scaling the dependent variable

= What if I change measurement of salary from
$000s to $s by multiplying it by 1,000?

0 HEstimates were... 0 =963.2
3=18.50

o =963,200

0 Now, they will be...
[ =18,500




Scaling y continued. ..

= Scaling y by an amount ¢ just causes all the
estimates to be scaled by the same amount

Mathematically, easy to see why...
y=a+ Bx+u
cy =(ca)+(cf)x+cu

y;

New intercept New slope



Scaling y continued. ..

= Notice, the scaling has 7o effect on the
relationship between ROE and salary

I.e. because y is expressed in §s now, ,BZ 18,500
means that a one percentage point increase in ROE
is still associated with $18,500 increase in salary



‘ Scaling the zndependent variable

= What if I instead change measurement of
ROE from percentage to decimal? (1.e.

multiply ROE by 1/100)
. a=963.2
0 Estimates were...
,B =18.50
a=963.2

2 Now, they will be...

p

1,850




Scaling x continued...

= Scaling x by an amount £ just causes the

slope on x to be scaled by 1/ £

Mathematically, easy to see why...
Will interpretation of
estimates change?

y=a+Bx+u

y=a+[§)kx+u

N\

New slope

Answer: Again, no!



Scaling both x and y

= [f scale y by an amount ¢ and x by
amount £ , then we get...

Intercept scaled by ¢
Slope scaled by ¢/ £

y=o+ Bx+u
cy =(cor)+ (C’B )kx+cu

= When is scaling useful?



‘ Practical application of scaling #1

m No one wants to see a coefficient of

0.000000456 or 1,234.567.890

= Just scale the variables for cosmetic purposes!

0 It will effect coefficients & SEs

0 But, it won’t affect t-stats or inference




Practical application of scaling #2 /P7/

= To improve interpretation, in terms of
found magnitudes, helpful to scale by the
variables by their sample standard deviation

Let O, and O, be sample standard deviations of
x and y respectively

Let ¢, the scalar for y, be equal to 1/ O,
Let 4, the scalar for x, be equal to 1/0

L.e. unit of x and y 1s now standard deviations



Practical application of scaling #2 /P2]

= With the prior rescaling, how would we
interpret a slope coetticient of 0.257

0 Answer = a 1 s.d. increase in x 1s associated
with V4 s.d. increase in y

0 The slope tells us how many standard
deviations y changes, on average, for a
standard deviation change in x

0 Is 0.25 large 1n magnitude? What about 0.01?



‘ Shifting the variables

= Suppose we instead add ¢ to y and £ to x (lL.e.
we shift y and x up by rand £ respectively)

= Will the estimated slope change?




Shifting continued. ..

= Nol! Only the estimated intercept will change

Mathematically, easy to see why...
y=0+ fx+u
y+c=a+c+ Bx+u
yte=a+c+ f(x+k)-Pk+u
yte=(a+c—Pk)+B(x+k)+u

N

New intercept Slope the same



Practical application of shifting

= To improve interpretation, sometimes helpful
to demean x by its sample mean

Let i be the sample mean of x; regress y on x - U__

Intercept now reflects expected value of y for x =u_
y= (Oc+ﬁ,ux)+,3(x—,ux)+u
E(y|x=p)=(o+pu,)

This will be very useful when we get to diff-in-diffs



‘ Break Time

m Let’s take 2 10 minute break




Linear Regression — Owutline

m The CEF and causality (very brief)
= [Linear OLS model

0 Basic interpretation
0 Rescaling & shifting of variables

0 Incorporating non-linearities

m Multivariate estimation

= Hypothesis testing

m Miscellaneous issues




Incorporating nonlinearities /[Part 1/

= Assuming that the causal CEF 1s linear
may not always be that realistic

0 E.g. consider the following regression
wage = O+ B education + u

0 Why might a linear relationship between #
of years of education and level of wages be
unrealistic’ How can we fix it?



Incorporating nonlinearities /Part 2/

= Better assumption is that each year of
education leads to a constant proportionate
(L.e. percentage) Increase 1n wages

Approximation of this intuition captured by...

In(wage) = O+ [ education + u

L.e. the linear specification is very flexible
because it can capture linear relationships
between non-linear variables



‘ Common nonlinear function forms

= Regressing Levels on Logs

= Regressing LL.ogs on Levels

= Regressing LLogs on Logs

Let’s discuss how to interpret each of these




The usetulness of log

= Log variables are useful because

100% Aln(y)=% Ay

Note: When I (and others) say “Log , we
really mean the natural logarithm, “Ln".
E.g. if you use the “log” function in Stata,
it assumes you meant In’



Interpreting log-level regressions

= If estimate, the In(wage) equation, 100 /3
will tell you the % A wage for an additional
year of education. To see this...

In(wage) = o + Beducation + u
Aln(wage) = fAeducation

100x Aln(wage) = (100 ) Aeducation
YoAwage = (100 ) Aeducation



Log-level interpretation continued...

m The proportionate change in y for a
given change in x 1s assumed constant

The change in y is not assumed to be
constant... it gets larger as x increases

Specifically, In(y) is assumed to be linear in
x; but y 1s not a linear function of x...

In(y)=a+ fx+u
y=exp(a+ fx+u)



Example interpretation

= Suppose you estimated the wage equation (where
wages are $/hour) and got...

In(wage) = 0.584 + 0.083¢ducation

What does an additional year of education get you?

Answer = 8.3% increase in wages.

Any potential problems with the specification?

Should we interpret the intercept?



Interpreting /og-log regressions

= If estimate the following...
In(y)=a+ BlIn(x)+u

= [ is the elasticity of y w.r.t. x!

0 ie. B is the percentage change in y for a
percentage change in x

0 Note: regression assumes constant elasticity
between y and x regardless of level of x



Example interpretation ot log-log

= Suppose you estimated the CEO salary model
using logs got the following:

In(salary) = 4.822 + 0.257 /n(sales)

= What is the interpretation of 0.2577

Answer = For each 1% increase in
sales, salary increases by 0.257%



‘ Interpreting Jevel-log regressions

= If estimate the following...
y=o+ [In(x)+u

= 3 /100 is the change in y for 1% change x




Example interpretation of level-log

= Suppose you estimated the CEO salary
model using logs got the following,
where salary 1s expressed 1n §000s:

salary = 4.822 + 1,812.5/n(sales)

= What is the interpretation of 1,812.5?

Answer = For each 1% increase in
sales, salary increases by $18,125



Summary of log functional forms

Dependent Independent

Model Variable Variable Interpretation of f3
Level-Level y X dy = Pdx
Level-Log y In(x) dy = (B/100)%0dx
Log-Level In(y) X %dy = (1008)dx

Log-Log In(y) In(x) %ody = %dx

= Now, let’s talking about what happens if
you change units (1.e. scale) for either y
or x in these regressions...



Rescaling logs doesn’t matter /Part 1]

= What happens to intercept & slope if rescale
(1.e. change units) of y when in log form?

= Answer = Only intercept changes; slope
unaffected because it measures proportional
change in y in Log-Level model

log(y)=a+ Bx+u
log(c)+log(y)=log(c)+ o+ Bx+u

log(cy) =(log(c)+ o)+ Bx+u



Rescaling logs doesn’t matter /Part 2]

= Same logic applies to changing scale of x in
level-log models. .. only intercept changes

y=o+ Blog(x)+u
y+ Blog(c)=a+ Blog(x)+ Blog(c)+u
y=(a—Plog(c))+ flog(cx)+u



‘ Rescaling logs doesn’t matter /[Part 3]

= Basic message — If you rescale a logged variable,
it will not effect the slope coetficient because you
are only looking at proportionate changes




Log approximation problems

= | once discussed a paper where author
argued that allowing capital inflows into
country caused -120% change in stock
prices during crisis periods...

Do you see a problem with this?

= Of course! A 120% drop in stock prices 1sn’t
possible. The true percentage change was -70%.
Here is where that author went wrong...



Log approximation problems [Part 1]

= Approximation error occurs because as true
% Ay becomes larger, 100 Aln(y)=% Ay

becomes a worse approximation

= To see this, consider a change fromytoy ...

Ex. #1: 2—2 =5% and 100Aln(y) = 4.9%

y

'

y—y
y

Ex. #2: ="75% , but 100Aln(y)= 56%



‘ Log approximation problems [Part 2]

400.00%

350.00% — — — Approximation
W 0

Exact

300.00%

250.00%

200.00%

% Change y

150.00%

100.00%

50.00%

0.00%




‘ Log approximation problems [Part 3]

= Problem also occurs for negative changes

'

0 Ex. #1: 272 =59 and 100Aln(y) = -5.1%
y

0 Ex. #2: 22 —_75% but 100Aln(y)= -139%
y




Log approximation problems [Part 4]

0 So, if implied percent change is large, better to convert
it to true % change before interpreting the estimate

In(y)=a+ Bx+u
In(y") —In(y) = B(x'-x)
In(y" y)= p(x'-x)
vy =exp(B(x'-x))
[(v'=»)/ ¥]%=100[ exp( B(x'~x))~1]



Log approximation problems [Part 5]

m We can now use this formula to see what

true % change in y 1s for x —x =1

'=-»1y.

('=»1y

% =100
% =100

:exp (B(x'-x))- 1]

exp(8)-1]

0 If B = 0.56, the percent change isn’ t 56%, it is

100[ exp(0.56)—1|=75%



‘ Recap of last two points on logs

= Two things to keep in mind about using logs

0 Rescaling a logged variable doesn’t atfect slope
coetficients; it will only atfect intercept

0 Log is only approximation for % change; it can
be a very bad approximation for large changes




Usetulness of logs — Summary

= Using logs gives coetticients
with appealing interpretation

= Can be ignorant about unit of
measurement of log variables
since they’re proportionate A's

= Logs of y or x can mitigate
intfluence of outliers



“Rules of thumb~ on when to use logs

= Helpftul to take logs for variables with...

0 Positive currency amount

0 Large integral values (e.g. population)

s Don’ t take logs for variables measured in
years Oor as proportions

m [f ye[0,00), can take In(1+y), but be
careful... nice interpretation no longer true...



What about using In(1+y)?

= Because In(0) doesn’t exist, people use In(1+y)
for non-negative variables, 1.e. YV € [0,00)

Be caretul interpreting the estimates! Nice
interpretation no longer true, especially if a lot of
zeros or many small values in y /Why?/

w  Ex. #1: What does it mean to go from in(0) to In(x>0)?
s Ex. #2: And, Ln(x"+1) — Ln(x+1) is not percent change of x

In this case, might be better to scale y by another
variable instead, like firm size



Tangent — Percentage Change

= What is the percent change in
unemployment if 1t goes from 10% to 9%o?

This 1s 10 percent drop
It is a 1 percentage point drop

= Percentage change is [(x; — x,)/x,] X100

= Percentage point change is the raw change in
percentages

Please take care to get this right in
description of your empirical results



‘ Models with quadratic terms [Parz 7]

= Considery= B, + B x+ L7+ u
= Partial effect of x'1s given by...
Ay = (:Bl T 2182X)Ax

0 What 1s different about this partial effect
relative to everything we’ve seen thus far?

= Answer = It depends on the value of x. So, we will
need to pick a value of x to evaluation (e.g. X)




Models with quadratic terms [Part 2]

= If 5,>0,5,<0, then it has parabolic relation
B,/ 2B,

Know where this turning point is! Don’ t claim a

Turning point = Maximum =

parabolic relation if 1t lies outside range of x!

Odd values might imply misspecification or simply
mean the quadratic terms are irrelevant and should
be excluded from the regression



Linear Regression — Owutline

m The CEF and causality (very brief)
= Linear OLS model

m Multivariate estimation

0 Properties & Interpretation
0 Partial regression interpretation

0 R? bias, and consistency

= Hypothesis testing

m Miscellaneous issues




Motivation

= Rather uncommon that we have
just one independent variable

2 So, now we will look at multivariate
OLS models and their properties...




Basic multivariable model

= Example with constant and £ regressors
y=8+0x+...+[x +u

= Similar identifying assumptions as before

No collinearity among covariates [why?]
BE(u|x,...,x,) =0

= Implies no correlation between any x and #, which
means we have the correct model of the true causal
relationship between y and (x,..., x)



Interpretation of estimates

= Hstimated intercept, [, is predicted
value of y when all x = 0; sometimes this
makes sense, sometimes it doesn’t

= Estimated slopes, (,Bl,...,ﬁk ), have a

more subtle interpretation now...

y=0+p0x +..+0x +u

How would you interpret 3, ?



Interpretation — Answer

= Estimated slopes, ( B, B ), have partial
etfect interpretations

= Typically, we think about change in just one
variable, e.o. A x,, holding constant all other
variables, i.e. (A x,,..., A x all equal 0)

This is given by Ay = ,Blel
Le. B is the coefficient holding a// else fixed
(ceterts paribus)



Interpretation continued...

= But, can also look at how changes in
multiple variables at once affects
predicted value of y

L.e. given changes in x, through x;,

we obtain the predicted change in y, Ay

A) = BAX, +...+ B Ax,



Example interpretation — College GPA

= Suppose we regress college GPA onto high
school GPA (4-point scale) and ACT score
for N = 141 university students

colGPA=1.29+0.453hsGPA+0.0094ACT

What does the intercept tell us?
What does the slope on /sGPA tell us?



Example — Answers

= Intercept pretty meaningless... person with

zero high school GPA and ACT doesn’t exist

= Example interpretation of slope...

Consider two students, Ann and Bob, with
identical ACT score, but Ann’s GPA 1s 1 point
higher than Bob. Best prediction of Ann’s college
GPA i1s that it will be 0.453 higher than Bob’s



Example continued...

= Now, what is etfect of increasing high school
GPA by 1 point and ACT by 1 point?

AcolGPA =0.453x AhsGPA+0.0094x AACT
AcolGPA =0.453+0.0094
AcolGPA =0.4624



Example continued...

m Lastly, what 1s etfect of increasing high school
GPA by 2 points and ACT by 10 points?

AcolGPA =0.453x AhsGPA+0.0094x AACT
AcolGPA =0.453x2+0.0094x10
AcolGPA =1



Fitted values and residuals

= Definition of residual for observation 7,

N

ﬁi = Vi = )i

= Properties of residual and fitted values

Sample average of residuals = 0; implies that
sample average of J equals sample average of y

Sample covariance between each independent
variable and residuals = 0

Point of means (), X,,...,X; ) lies on regression line



Tangent about residuals

= Again, it bears repeating...

Looking at whether the residuals are correlated
with the x’s 1s NO'T a test for causality

By construction, they are uncorrelated with x

There is no " test. of whether the CEF is the
causal CEF; that justification will need to rely
On economic arguments




Linear Regression — Owutline

m The CEF and causality (very brief)
= Linear OLS model

m Multivariate estimation

0 Properties & Interpretation
0 Partial regression interpretation

0 R? bias, and consistency

= Hypothesis testing

m Miscellaneous issues




Question to motivate the topic. . .

= What is wrong with the following? And why?

Researcher wants to know effect of x on y
after controlling for 2

So, researcher removes the variation in y that 1s
driven by g by regressing y on ¢ & saves residuals

Then, researcher regresses these residuals on x and
claims to have identified effect of x on y controlling
for g using this regression

We’ll answer why it’s
wrong in a second...



Partial regression /Part 1]

= The following is quite usetul to know...

m Suppose you want to estimate the following

y:ﬂo +:le1 +182x2 Tu

Is there another way to get [, that doesn’t
involve estimating this directly?

= Answer: Yes! You can estimate it by regressing the
residuals from a regression of y on x, onto the
residuals from a regression of x;, onto x;,



Partial regression /Part 2]

= To be clear, you get J, by...

#1 — Regress y on x; save residuals (call them y )
#2 — Regtess x; on x,; save residuals (call them X )

#3 — Regress ¥ onto X ; the estimated coefficient
will be the same as if you’d just run the original
multivariate regression!!!



Partial regression — Interpretation

= Multivariate estimation is basically finding
etfect of each independent variable after
partialing out effect of other variables

L.e. Effect of x;, on y after controlling for x, (i.e.
what you' d get from regressing y on both x;, and
x,) 1s the same as what you get after you partial
out the effect x, from both x;, and y and then run
a regression using the residuals



Partial regression — Generalized

= This property holds more generally...

Suppose X, is vector of independent variables

X, 1s vector of more independent variables

And, you want to know that coefficients on X, that
you would get from a multivariate regression of y
onto all the variables in X, and X,...



Partial regression — Generalized, Part 2

= You can get the coefficients for each
variable in X, by...

Regress y and each variable in X, onto all the
variables in X, (at once), save residuals from
each regression

Do a regression of residuals; 1.e. regress y
onto variables of X, but replace y and X,
with the residuals from the corresponding
regression in step #1



Practical application ot partial regression

= Now, what is wrong with the following?

Researcher wants to know effect of x on y
after controlling for 2

So, researcher removes the variation in y that 1s
driven by g by regressing y on ¢ & saves residuals

Then, researcher regresses these residuals on x and
claims to have identified effect of x on y controlling
for g using this regression



Practical application — Answer

= It’s wrong because it didn’t partial effect of
zout of x!I Therefore, it 1s NOT the same
as regressing y onto both x and 2!

= Unfortunately, it 1s commonly done by

researchers in finance /e.g. industry-adiusting/

We will see how badly this can mess up things in
a later lecture where we look at my paper with
David Matsa on unobserved heterogeneity



Linear Regression — Owutline

m The CEF and causality (very brief)
= Linear OLS model

m Multivariate estimation

0 Properties & Interpretation
0 Partial regression interpretation

0 R?, bias, and consistency
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‘ Goodness-of-Fit (R?)

= A lot is made of R-squared; so let’s
quickly review exactly what it 1s

= Start by defining the following:

0 Sum of squares total (SST)
0 Sum of squares explained (SSE)
0 Sum of squares residual (SSR)




Deftinition of SST, SSE, SST

If N is the number of observations and the
regression has a constant, then

_\2
SST =) (v:—¥) SST is total variation in y

i=1

-~ —\2  SSEis total variation in predicted y
SSE = -

p (y’ y) [mean of predicted y = mean of y]

N
SSR =Y ;2 SSR is total variation in residuals

i=1 [mean of residnal = 0]



SSR, SST, and SSE continued...

m The total variation, SST, can be broken
into two pieces... the explained part,
SSE and unexplained part, SSR

SST = SSE + SSR

= R?is just the share of total variation that
is explained! In other words,

R? =SSE/SST =1-SSR/SST



More about R?

m As seen on last slide, R? must be
between 0 and 1

= It can also be shown that R is equal
to the square of the correlation
between y and predicted y

= If you add an independent variable,
R? will never go down



Adjusted R?

= Because R*always goes up, we often use
what is called Adjusted R?

N-1 )

AdeZ:l—(l—Rz)(

k = # of regressors, excluding the constant

Basically, you get penalized for each additional
regressor, such that adjusted R* won’t go up after
you add another variable if it doesn’t improve fit
much [it can actually go downl]



Interpreting R?

» If I tell you the R?is 0.014 from a
regression, what does that mean? Is it bad?

Answer #1 = It means I' m only explaining
about 1.4% of the variation in y with the
regressors that I m including in the regression

Answer #2 = Not necessarily! It doesn’ t mean
the model is wrong; you might still be getting a
consistent estimate of the 3 you care about!




Unbiasedness versus Consistency

= When we say an estimate 1s unbiased
or consistent, it means we think it has
a causal interpretation...

I.e. the CMI assumption holds and the x’s are
all uncorrelated with the disturbance, #

= Bias refers to finite sample property;
consistency refers to asymptotic property



More formally...

® An estimate, ,B ,is unbiased if £ ( ,B ) =p

I.e. on average, the estimate is centered around the
true, unobserved value of [3

’ .
Doesn' t say whether you get a more precise
estimate as sample size increases

= An estimate is consistent if plim B =/

N—co

I.e. as sample size increases, the estimate converges
(in probability limit) to the true coefficient



Unbiasedness of OLS

m OLS will be unbiased when...

Model is linear in parameters

We have a random sample of x

No pertect collinearity between x’s
BE(u|x,..., x) =0

[Earlier assumptions #1 and #2 give us this]

= Unbiasedness 1s nice feature of OLS; but in
practice, we care more about consistency



‘ Consistency of OLS

m OLS will be consistent when

0 Model is linear in parameters

0« 1s not correlated with any of the x’s,

[CMI assumptions H1 and #2 give us this]

= Again, this is good

m See textbooks for more information




Summary of Today /Part 1]

= The CEF, E(y| x) has desirable properties

Linear OLS gives best linear approx. of it

If correlation between error, #, and independent
variables, x’s, 1s zero it has causal interpretation

= Scaling & shifting of variables doesn’t affect
inference, but can be useful

E.g. demean to give intercepts more meaningful
interpretation or rescale for cosmetic purposes



‘ Summary of Today [Part 2]

= Multivariate estimates are partial effects

0 Le. effect of x;, holding x,,..., x, constant

0 Can get same estimates in two steps by first
partialing out some variables and regressing
residuals on residuals in second step




Assign papers for next week...

= Angrist (AER 1990)

B . ' These seminal
Military service & future earnings papets in

economics with

O Angrist and Lavy (Q]E 1999) clever identification

strategies...
Class size & student achievements  i.e., what we aspire
to learn about later

= Acemoglu, et al. (AER 2001) in the course

Institutions and economic development



In First Half of Next Class

= Finish discussion of the linear regression

0 Hypothesis testing
0 Irrelevant regressors & multicollinearity

0 Binary variables & interactions

= Relevant readings; see syllabus






