
FNCE 926 
Empirical Methods in CF 

Professor Todd Gormley 

Lecture 1 –  Linear Regression I 



Today’s Agenda 

n  Introduction 
n  Discussion of Syllabus 
n  Review of linear regressions 



About Me 

n  PhD from MIT economics 
n  Undergraduate at Michigan St. Univ. 
n  Research on bank entry & corporate 

topics involving risk and governance 



Today’s Agenda 

n  Introduction… about me 
n  Discussion of Syllabus 
n  Review of linear regressions 



Course Objectives 

n  Provide toolbox & knowledge of cross-
sectional & panel data empirical methods 

n  Course will have three-pronged approach 

q  Lectures will provide you econometric intuition 
behind each method discussed 

q  Course readings expose you to examples of 
these tools being used in recent research 

q  Exercises will force you to use the methods 
taught in actual data 



Reading Materials [Part 1] 

n  My lecture notes will be your primary 
source for each econometric tool 

n  But, please read background texts before 
lecture [see syllabus for relevant sections] 

q  Angrist & Pischke’s Mostly Harmless… book 
q  Roberts & Whited (2010) paper 
q  Greene’s textbook on econometrics 
q  Wooldridge’s textbook on panel data 



Reading Materials [Part 2] 

n  We will also be covering 35+ empirical 
papers; obtain these using Econlit or 
by going to authors’ SSRN websites 
for working papers [I’ve provided links] 

q  Sorry, for copyright reasons, I can’t post 
the papers to Canvas… 

q  Just let me know if you have any problem 
finding a particular paper 



Study Groups 

n  3 study groups will do in-class presentations 

q  Choose own members; can change later if need to 
q  Try to split yourself somewhat equally into groups 
q  Choose initial groups during today’s break; first 

group presentations will be in next class!                              
[More about group presentations in a second…] 



Course Structure 

n  Total of 150 possible points 

q  In-class exam [50 points] 

q  Five data exercises [25 points] 

q  In-class presentations/participation [25 points] 
q  Research proposal 

n  Rough draft [15 points] 
n  Final proposal [35 points] 



Exam 

n  Done in last class, April 26 
n  More details when we get closer…, but a 

practice exam is already available on Canvas 



Data exercises 

n  Exercises will ask you to download and 
manipulate data within Stata 

q  E.g. will need to estimate a triple-diff 

q  To receive credit, you will send me your DO 
files; I will then run them on my own dataset to 
confirm the coding is correct 

q  More instructions in handouts [which will be 
available on Canvas website] 



Turning in exercises 

n  Please upload both DO file and typed 
answers to Canvas; i.e., we won’t be 
handing them in during class 

q  They will be graded & returned on Canvas 

q  Deadline to submit is noon                          
[Canvas tracks when the file is uploaded] 



In-class presentations & participation 

n  In every class (except today), students will 
present three papers in second half 

q  Each study group does one presentation (this is 
why there needs to be three study groups) 

 

n  But, only one student for each group actually presents 
n  Rotate the presenter each week; doing this basically 

guarantees everyone full participation points 

 

q  Assign papers for next class at end of class             
[all papers are listed in the syllabus] 



PowerPoint Presentations [Part 1] 

n  Should last for 10 min., no more than 12 min. 

q  Summarize [2-3 minutes] 
q  Analytical discussion which should focus on 

identification and causality [6-7 minutes] 
q  Conclusion [1 minute] 

n  Presentations followed by 5-10 minutes 
discussion; students must read all three papers 

n  See handout on Canvas for more details 



PowerPoint Presentations [Part 2] 

n  Each student must also type up 2-3 sentence 
concern for each paper their group does NOT 
present and turn it in at start of class  

q  I will randomly select one after each student 
presentation to further facilitate class discussion 

q  Write your comment with one of these goals in mind… 

n  Write down your own view of “biggest concern” 
n  Or, write a concern you think presenter might miss! 





Research Proposal 

n  You will outline a possible empirical paper 
that uses tools taught in this course 

q  Rough draft due March 22 
q  Final proposal due exam week, May 3 

n  If you want, think of this as a jump start on a 
possible 2nd or 3rd year paper 

n  See handout on Canvas for more details 



Office Hours & E-mail 

n  My office hours will be… 

q  Thursdays, 1:30-3:00 p.m. 
q  Or, by appointment 

n  Office location: 2458 SH-DH 
n  Email: tgormley@wharton.upenn.edu   



Teaching Assistant 

n  The TA for this course will be… 

q  Tetiana Davydiuk 
q  davydiuk@wharton.upenn.edu   

n  She will be grading the exercises and answering 
any questions you might have about them 

All other questions can be directed to me! 



Tentative Schedule 

n  See syllabus… 
n  While exam date & final research proposal 

deadline are fixed, topics covered and other 
case due dates may change slightly if there is a 
sudden and unexpected class cancellation 

 



How the course is structured… 

n  We will have a 1-2 lectures per ‘tool’ 

q  I will lecture in first half (except today) on the ‘tool’ 
q  In the second half of the following class, students will 

present papers using that particular tool 

 



Canvas  

n  https://wharton.instructure.com  
n  Things available to download 

q  Exercises & solutions [after turned in] 

q  Lecture notes 
q  Handouts that provide more details on what I 

expect for presentations & research proposal, 
including grading templates 

q  Practice exam 
q  Student presentations [to help study for exam] 

 



Lecture Notes 

n  I will provide a copy of lecture notes on 
Canvas before the start of each class 

q  I strongly encourage printing these out and 
bringing them with you to class! 

 
 



Structural estimation lecture 

n  Prof. Taylor has agreed to give this lecture 
n  Tuesday, April 19… the usual time 

 
 



Remaining Items 

n  3 hours is long! We’ll take one 10 minute 
break or two 5 minute breaks 

n  Read rest of syllabus for other details 
about the course including: 

q  Class schedule or assigned papers are subject 
to change; I’ll keep you posted of changes 

q  Limitation of course; I won’t have time to 
cover everything you should know, but it will 
be a good start 

 
 



Questions 

n  If you have a question, ask!  J 

q  If you’re confused, you’re probably not alone 
q  I don’t mind being interrupted 
q  If I’m going too fast, just let me know 

n  I may not always have an immediate answer, 
but all questions will be answered eventually 

n  Any questions? 



Today’s Agenda 

n  Introduction 
n  Discussion of Syllabus 
n  Review of linear regressions 

My expectation is that 
you’ve seen most of  this 
before; but it is helpful to 
review the key ideas that 
are useful in practice 
(without all the math) 

Despite trying to do much 
of  it without math; today’s 
lecture likely to be long 
and tedious… (sorry) 



Linear Regression – Outline  

n  The CEF and causality (very brief) 
n  Linear OLS model 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 

We will cover the latter 
two in the next lecture 



Background readings 

n  Angrist and Pischke 
q  Sections 3.1-3.2, 3.4.1 

n  Wooldridge 
q  Sections 4.1 & 4.2 

n  Greene 
q  Chapter 3 and Sections 4.1-4.4, 5.7-5.9, 6.1-6.2 

 



Motivation 

n  Linear regression is arguably the most popular 
modeling approach in corporate finance 

q  Transparent and intuitive 
q  Very robust technique; easy to build on 
q  Even if not interested in causality, it is useful for 

describing the data 

 Given importance, we will spend today &         
next lecture reviewing the key ideas 



Motivation continued… 

n  As researchers, we are interested 
explaining how the world works 

q  E.g. how are firms’ choices regarding leverage 
are explained by their investment opportunities 

n  I.e., if investment opportunities suddenly jumped 
for some random reason, how would we expect 
firms’ leverage to respond on average? 

q  More broadly, how is y explained by x, where 
both y and x are random variables? 



Linear Regression – Outline  

n  The CEF and causality (very brief) 

q  Random variables & the CEF 
q  Using OLS to learn about the CEF 
q  Briefly describe “causality” 

n  Linear OLS model 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 



A bit about random variables 

n  With this in mind, it is useful know that any 
random variable y can be written as 

where (y, x, ε) are random variables and E(ε|x)=0	
  
 

q  E(y|x) is expected value of y given x 
q  In words, y can be broken down into part 

‘explained’ by x, E(y|x), and a piece that is 
mean independent of x, ε 

( | )y E y x ε= +



Conditional expectation function (CEF) 

n  E(y|x) is what we call the CEF, and 
it has very desirable properties 

q  Natural way to think about relationship 
between x and y 

q  And, it is best predictor of y given x     
in a minimum mean-squared error sense 

n  I.e. E(y|x) minimizes E[(y-m(x))2],where 
m(x) can be any function of x.  



CEF visually… 

n  E(y|x) is fixed, but unobservable 

n  Intuition: for any value of x, distribution 
of y is centered about E(y|x) 

Our goal is         
to learn about 

the CEF 



Linear Regression – Outline  

n  The CEF and causality (very brief) 

q  Random variables & the CEF 
q  Using OLS to learn about the CEF 
q  Briefly describe “causality” 

n  Linear OLS model 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 



Linear regression and the CEF 

n  If done correctly, a linear regression can 
help us uncover what the CEF is 

n  Consider linear regression model, 

q  y = dependent variable 
q  x = independent variable  
q  u = error term (or disturbance) 
q  β = slope parameter 

y x uβ= +



Some additional terminology 

n  Other terms for y… 

q  Outcome variable 
q  Response variable 
q  Explained variable 
q  Predicted variable 
q  Regressand 

n  Other terms for x… 

q  Covariate 
q  Control variable 
q  Explanatory variable 
q  Predictor variable 
q  Regressor 



Details about y = βx + u 

n  (y, x, u) are random variables 
n  (y, x) are observable 
n  (u, β) are unobservable 

q  u captures everything that determines y after 
accounting for x [This might be a lot of stuff!] 

q  We want to estimate β 



Ordinary Least Squares (OLS) 

n  Simply put, OLS finds the β that 
minimizes the mean-squared error 

n  Using first order condition: E[x(y-βx)]=0, 
we have β=E(xy)/E(x2) 

n  Note: by definition, the residual from this 
regression, y-βx, is uncorrelated with x 

2argmin [( ) ]
b

E y bxβ = = −



What great about this linear regression? 

n  It can be proved that… 

q  βx is best* linear prediction of y given x 
q  βx is best* linear approximation of E(y|x) 

*  ‘best’ in terms of minimum mean-squared error 

n  This is quite useful.  I.e. even if E(y|x) is 
nonlinear, the regression gives us the best 
linear approximation of it 
 



Linear Regression – Outline  

n  The CEF and causality (very brief) 

q  Random variables & the CEF 
q  Using OLS to learn about the CEF 
q  Briefly describe “causality” 

n  Linear OLS model 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 



What about causality? 

n  Need to be careful here…  

q  How x explains y, which this regression 
helps us understand, is not the same as 
learning the causal effect of x on y 

q  For that, we need more assumptions… 

 



The basic assumptions [Part 1] 

n  Assumption #1: E(u) = 0 

q  With intercept, this is totally innocuous 
q  Just change regression to y = α + βx + u,   

where α is the intercept term 
q  Now suppose, E(u)=k≠0 

n  We could rewrite u = k + w, where E(w)=0 
n  Then, model becomes y = (α + k) + βx + w 
n  Intercept is now just α + k, and error, w, is mean zero 
n  I.e. Any non-zero mean is absorbed by intercept 

 



The basic assumptions [Part 2] 

n  Assumption #2: E(u|x) = E(u) 

q  In words, average of u (i.e. unexplained portion 
of y) does not depend on value of x 

q  This is “conditional mean independence” (CMI) 

n  True if x and u are independent of each other 
n  Implies u and x are uncorrelated 

 This is the key assumption being made 
when people make causal inferences 

 

Intuition? 



CMI Assumption 

n  Basically, assumption says you’ve got correct 
CEF model for causal effect of x on y 

q  CEF is causal if it describes differences in 
average outcomes for a change in x  

n  i.e. increase in x from values a to b is equal to             
E(y|x=b)–E(y|x=a)  [In words?] 

q  Easy to see that this is only true if E(u|x) = E(u) 
[This is done on next slide…] 



Example of why CMI is needed 

n  With model y = α + βx + u,  

q  E(y|x=a) = α + βa + E(u|x=a) 
q  E(y|x=b) = α + βb + E(u|x=b) 
q  Thus, E(y|x=b) – E(y|x=a) =                           
β(b-a) + E(u|x=b) – E(u|x=a) 

q  This only equals what we think of as the ‘causal’ 
effect of x changing from a to b if E(u|x=b) = 
E(u|x=a)… i.e. CMI assumption holds 



Tangent – CMI versus correlation 

n  CMI (which implies x and u are 
uncorrelated) is needed for no bias           
[which is a finite sample property] 

n  But, we only need to assume a zero 
correlation between x and u for consistency  
[which is a large sample property] 

q  More about bias vs. consistency later; but we 
typically care about consistency, which is why 
I’ll often refer to correlations rather than CMI 



Is it plausible? 

n  Admittedly, there are many reasons why 
this assumption might be violated 

q  Recall, u captures all the factors that affect y 
other than x… It will contain a lot! 

q  Let’s just do a couple of examples… 



Ex. #1 – Capital structure regression 

n  Consider following firm-level regression: 

q  CMI implies average u is same for each profitability 
q  Easy to find a few stories why this isn’t true… 

n  #1 – unprofitable firms tend to have higher bankruptcy risk, 
which by tradeoff theory, should mean a lower leverage 

n  #2 – unprofitable firms have accumulated less cash, which 
by pecking order means they should have more leverage  

i i iLeverage Profitability uα β= + +



Ex. #2 – Investment 

n  Consider following firm-level regression: 

q  CMI implies average u is same for each Tobin’s Q 
q  Easy to find a few stories why this isn’t true… 

n  #1 – Firms with low Q might be in distress & invest less 
n  #2 – Firms with high Q might be smaller, younger firms 

that have a harder time raising capital to fund investments 

i i iInvestment Q uα β= + +

Measure of  
investment 

opportunities 



Is there a way to test for CMI? 

n  Let     be the predicted value of y, i.e.                                
Ttttt        , where α and β are OLS estimates 

n  And, let     be the residual, i.e. 
n  Can we prove CMI if residuals if  E(   )=0   

and if      is uncorrelated with x? 

q  Answer: No!  By construction these residuals are 
mean zero and uncorrelated with x.  See earlier 
derivation of OLS estimates 

ŷ
ŷ xα β= +

û ˆ ˆu y y= −

û
û



Identification police 

n  What people call the “identification police” 
are those that look for violations of CMI 

q  I.e. the “police” look for a reason why the 
model’s disturbance is correlated with x 

n  Unfortunately, it’s not that hard… 
n  Trying to find ways to ensure the CMI 

assumption holds and causal inferences can be 
made will be a key focus of this course 



A side note about “endogeneity” 

n  Many “police” will criticize a model by 
saying it has an “endogeneity problem” but 
then don’t say anything further… 

n  But what does it mean to say there is an 
“an endogeneity problem”? 



A side note about “endogeneity” 

n  My view: such vague “endogeneity” critics 
suspect something is potentially wrong, but 
don’t really know why or how 

q  Don’t let this be you!  Be specific about 
what the problem is! 

n  Violations to CMI can be roughly 
categorized into three bins… which are? 



Three reasons why CMI is violated 

n  Omitted variable bias 
n  Measurement error bias 
n  Simultaneity bias 

q  We will look at each of these in  much 
more detail in the “Causality” lecture 



What “endogenous” means to me 

n  An “endogenous” x is when its value depends 
on y (i.e. it determined jointly with  y such that 
there is simultaneity bias).   

q  But, some use a broader definition to                 
mean any correlation between x and u                  
[e.g. Roberts & Whited (2011)] 

q  Because of the confusion, I avoid using 
“endogeneity”; I’d recommend the same for you 

n  I.e. Be specific about CMI violation; just say omitted 
variable, measurement error, or simultaneity bias 



A note about presentations… 

n  Think about “causality” when presenting 
next week and the following week 

q  I haven’t yet formalized the various reasons for 
why “causal” inferences shouldn’t be made; but 
I’d like you to take a stab at thinking about it 



Linear Regression – Outline  

n  The CEF and causality (very brief) 

n  Linear OLS model 

q  Basic interpretation 
q  Rescaling & shifting of variables 
q  Incorporating non-linearities 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 



Interpreting the estimates 

n  Suppose I estimate the following model of 
CEO compensation 

q  Salary for CEO i is in $000s; ROE is a % 

n  If you get… 

q  What do these coefficients tell us? 
q  Is CMI likely satisfied? 

i i isalary ROE uα β= + +

ˆ 963.2
ˆ 18.50

α

β

=

=



Interpreting the estimates – Answers  

n  What do these coefficients tell us? 

q  1 percentage point increase in ROE is 
associated with $18,500 increase in salary 

q  Average salary for CEO with ROE = 0 
was equal to $963,200 

n  Is CMI likely satisfied?  Probably not 

963.2 18.5i i isalary ROE u= + +



Linear Regression – Outline  

n  The CEF and causality (very brief) 

n  Linear OLS model 

q  Basic interpretation 
q  Rescaling & shifting of variables 
q  Incorporating non-linearities 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 



Scaling the dependent variable 

n  What if I change measurement of salary from 
$000s to $s by multiplying it by 1,000? 

q  Estimates were…  

q  Now, they will be… 

ˆ 963.2
ˆ 18.50

α

β

=

=

ˆ 963,200
ˆ 18,500

α

β

=

=



Scaling y continued… 

n  Scaling y by an amount c just causes all the 
estimates to be scaled by the same amount 
q  Mathematically, easy to see why… 

( ) ( )
y x u
cy c c x cu

α β
α β

= + +
= + +

New intercept New slope 



Scaling y continued… 

n  Notice, the scaling has no effect on the 
relationship between ROE and salary 

q  I.e. because y is expressed in $s now,     = 18,500 
means that a one percentage point increase in ROE 
is still associated with $18,500 increase in salary 

β̂



Scaling the independent variable 

n  What if I instead change measurement of 
ROE from percentage to decimal? (i.e. 
multiply ROE by 1/100) 

q  Estimates were…  

q  Now, they will be… 

ˆ 963.2
ˆ 18.50

α

β

=

=

ˆ 963.2
ˆ 1,850

α

β

=

=



Scaling x continued… 

n  Scaling x by an amount k just causes the 
slope on x to be scaled by 1/k 

q  Mathematically, easy to see why… 

 

y =α + βx + u

y =α + β
k

⎛
⎝⎜

⎞
⎠⎟

kx + u

New slope 

Will interpretation of  
estimates change? 

Answer: Again, no! 



Scaling both x and y 

n  If scale y by an amount c and x by 
amount k , then we get… 

q  Intercept scaled by c 
q  Slope scaled by c/k 

n  When is scaling useful? 

( )

y x u
ccy c kx cu
k

α β
βα

= + +

⎛ ⎞= + +⎜ ⎟⎝ ⎠



Practical application of scaling #1 

n  No one wants to see a coefficient of 
0.000000456 or 1,234,567,890 

n  Just scale the variables for cosmetic purposes! 

q  It will effect coefficients & SEs 
q  But, it won’t affect t-stats or inference 



Practical application of scaling #2 [P1] 

n  To improve interpretation, in terms of 
found magnitudes, helpful to scale by the 
variables by their sample standard deviation 

q  Let σx and σy be sample standard deviations of 
x and y respectively 

q  Let c, the scalar for y, be equal to 1/σy  
q  Let k, the scalar for x, be equal to 1/σx  
q  I.e. unit of x and y is now standard deviations 



Practical application of scaling #2 [P2] 

n  With the prior rescaling, how would we 
interpret a slope coefficient of 0.25? 

q  Answer = a 1 s.d. increase in x is associated 
with ¼ s.d. increase in y 

q  The slope tells us how many standard 
deviations y changes, on average, for a  
standard deviation change in x 

q  Is 0.25 large in magnitude?  What about 0.01? 



Shifting the variables 

n  Suppose we instead add c to y and k to x (i.e. 
we shift y and x up by c and k respectively) 

n  Will the estimated slope change? 



Shifting continued… 

n  No! Only the estimated intercept will change 

q  Mathematically, easy to see why… 

( )
( ) ( )

y x u
y c c x u
y c c x k k u

y c c k x k u

α β
α β
α β β
α β β

= + +
+ = + + +
+ = + + + − +

+ = + − + + +

New intercept Slope the same 



Practical application of shifting 

n  To improve interpretation, sometimes helpful 
to demean x by its sample mean 

q  Let μx be the sample mean of x; regress y on x - μx  

q  Intercept now reflects expected value of y for x =μx 

q  This will be very useful when we get to diff-in-diffs 
  

y = α + βµx( ) + β x − µx( ) + u

E( y | x = µx ) = α + βµx( )



Break Time 

n  Let’s take a 10 minute break 



Linear Regression – Outline  

n  The CEF and causality (very brief) 

n  Linear OLS model 

q  Basic interpretation 
q  Rescaling & shifting of variables 
q  Incorporating non-linearities 

n  Multivariate estimation 
n  Hypothesis testing 
n  Miscellaneous issues 



Incorporating nonlinearities [Part 1] 

n  Assuming that the causal CEF is linear 
may not always be that realistic 

q  E.g. consider the following regression 

q  Why might a linear relationship between # 
of years of education and level of wages be 
unrealistic?  How can we fix it? 

wage = α+ βeducation + u 



Incorporating nonlinearities [Part 2] 

n  Better assumption is that each year of 
education leads to a constant proportionate 
(i.e. percentage) increase in wages 

q  Approximation of this intuition captured by… 

q  I.e. the linear specification is very flexible 
because it can capture linear relationships 
between non-linear variables 

ln(wage) = α+ βeducation + u 



Common nonlinear function forms 

n  Regressing Levels on Logs 
n  Regressing Logs on Levels 
n  Regressing Logs on Logs 

Let’s discuss how to interpret each of these 



The usefulness of log 

n  Log variables are useful because 
100*Δln(y)≈% Δy 

q  Note: When I (and others) say “Log”, we 
really mean the natural logarithm, “Ln”.  
E.g. if you use the “log” function in Stata, 
it assumes you meant “ln” 



Interpreting log-level regressions 

n  If estimate, the ln(wage) equation, 100β 
will tell you the %Δwage for an additional 
year of education.  To see this… 

ln( )
ln( )

100 ln( ) (100 )
% (100 )

wage education u
wage education

wage education
wage education

α β
β

β
β

= + +
Δ = Δ

×Δ = Δ
Δ ≈ Δ



Log-level interpretation continued… 

n  The proportionate change in y for a 
given change in x is assumed constant 

q  The change in y is not assumed to be 
constant… it gets larger as x increases 

q  Specifically, ln(y) is assumed to be linear in 
x; but y is not a linear function of x…  

ln( )
exp( )
y x u

y x u
α β
α β

= + +
= + +



n  Suppose you estimated the wage equation (where 
wages are $/hour) and got… 

q  What does an additional year of education get you?   

q  Any potential problems with the specification? 
q  Should we interpret the intercept? 

Example interpretation 

ln(wage) = 0.584 + 0.083education 

Answer = 8.3% increase in wages. 



Interpreting log-log regressions 

n  If estimate the following… 

n  β is the elasticity of y w.r.t. x! 

q  i.e. β is the percentage change in y for a 
percentage change in x 

q  Note: regression assumes constant elasticity 
between y and x regardless of level of x 

ln( ) ln( )y x uα β= + +



n  Suppose you estimated the CEO salary model 
using logs got the following: 

n  What is the interpretation of 0.257?   

Example interpretation of log-log 

ln(salary) = 4.822 + 0.257ln(sales) 

Answer = For each 1% increase in 
sales, salary increases by 0.257% 



Interpreting level-log regressions 

n  If estimate the following… 

n  β/100 is the change in y for 1% change x 

ln( )y x uα β= + +



n  Suppose you estimated the CEO salary 
model using logs got the following, 
where salary is expressed in $000s: 

n  What is the interpretation of 1,812.5?   

Example interpretation of level-log 

salary = 4.822 + 1,812.5ln(sales) 

Answer = For each 1% increase in 
sales, salary increases by $18,125 



Summary of log functional forms 

n  See syllabus… 
n  Now, let’s talking about what happens if 

you change units (i.e. scale) for either y 
or x in these regressions… 

Model
Dependent 

Variable
Independent 

Variable
Interpretation of β

Level-Level y x dy = βdx
Level-Log y ln(x) dy  = (β/100)%dx
Log-Level ln(y) x %dy = (100β)dx
Log-Log ln(y) ln(x) %dy  = β%dx



Rescaling logs doesn’t matter [Part 1] 

n  What happens to intercept & slope if rescale 
(i.e. change units) of y when in log form? 

n  Answer = Only intercept changes; slope 
unaffected because it measures proportional 
change in y in Log-Level model 

 
( )

log( )
log( ) log( ) log( )

log( ) log( )

y x u
c y c x u

cy c x u

α β
α β
α β

= + +
+ = + + +

= + + +



Rescaling logs doesn’t matter [Part 2] 

n  Same logic applies to changing scale of x in 
level-log models… only intercept changes 

 

( )

log( )
log( ) log( ) log( )

log( ) log( )

y x u
y c x c u

y c cx u

α β
β α β β

α β β

= + +
+ = + + +

= − + +



Rescaling logs doesn’t matter [Part 3] 

n  Basic message – If you rescale a logged variable, 
it will not effect the slope coefficient because you 
are only looking at proportionate changes 

 



Log approximation problems 

n  I once discussed a paper where author 
argued that allowing capital inflows into 
country caused -120% change in stock 
prices during crisis periods… 

q  Do you see a problem with this? 

n  Of course! A 120% drop in stock prices isn’t 
possible.  The true percentage change was -70%.  
Here is where that author went wrong… 

 
 



Log approximation problems [Part 1] 

n  Approximation error occurs because as true 
%Δy becomes larger, 100Δln(y)≈%Δy 
becomes a worse approximation 

n  To see this, consider a change from y to y’… 

q  Ex. #1:                     , and 100Δln(y) = 4.9% 

q  Ex. #2:                       , but 100Δln(y)= 56% 

 
 

' 5%y y
y
− =

' 75%y y
y
− =



Log approximation problems [Part 2] 



Log approximation problems [Part 3] 

n  Problem also occurs for negative changes 
 

q  Ex. #1:                      , and 100Δln(y) = -5.1% 

q  Ex. #2:                        , but 100Δln(y)= -139% 

 
 

' 5%y y
y
− = −

' 75%y y
y
− = −



Log approximation problems [Part 4] 

q  So, if implied percent change is large, better to convert 
it to true % change before interpreting the estimate 

 
 

( )
[ ] ( )

ln( )
ln( ') ln( ) ( ' )

ln( '/ ) ( ' )
'/ exp ( ' )

( ' ) / % 100 exp ( ' ) 1

y x u
y y x x

y y x x
y y x x

y y y x x

α β
β
β

β

β

= + +
− = −

= −
= −

⎡ ⎤− = − −⎣ ⎦



Log approximation problems [Part 5] 

n  We can now use this formula to see what 
true % change in y is for x’–x = 1 

q  If β = 0.56, the percent change isn’t 56%, it is 

 
 

[ ] ( )
[ ] ( )
( ' ) / % 100 exp ( ' ) 1

( ' ) / % 100 exp 1

y y y x x

y y y

β

β

⎡ ⎤− = − −⎣ ⎦
⎡ ⎤− = −⎣ ⎦

( )100 exp 0.56 1 75%⎡ ⎤− =⎣ ⎦



Recap of last two points on logs 

n  Two things to keep in mind about using logs 

q  Rescaling a logged variable doesn’t affect slope 
coefficients; it will only affect intercept 

q  Log is only approximation for % change; it can 
be a very bad approximation for large changes 

 



Usefulness of logs – Summary  

n  Using logs gives coefficients 
with appealing interpretation 

n  Can be ignorant about unit of 
measurement of log variables 
since they’re proportionate Δs 

n  Logs of y or x can mitigate 
influence of outliers 

 
 



“Rules of thumb” on when to use logs 

n  Helpful to take logs for variables with… 

q  Positive currency amount 
q  Large integral values (e.g. population) 

n  Don’t take logs for variables measured in 
years or as proportions 

n  If               , can take ln(1+y), but be 
careful… nice interpretation no longer true… 

 
 

[0, )y∈ ∞



What about using ln(1+y)? 

n  Because ln(0) doesn’t exist, people use ln(1+y) 
for non-negative variables, i.e.  

q  Be careful interpreting the estimates!  Nice 
interpretation no longer true, especially if a lot of 
zeros or many small values in y  [Why?] 

n  Ex. #1: What does it mean to go from ln(0) to ln(x>0)? 
n  Ex. #2: And, Ln(x’+1) – Ln(x+1) is not percent change of x 

q  In this case, might be better to scale y by another 
variable instead, like firm size 

 
 

[0, )y∈ ∞



Tangent – Percentage Change 

n  What is the percent change in 
unemployment if it goes from 10% to 9%? 
q  This is 10 percent drop 
q  It is a 1 percentage point drop 

n  Percentage change is [(x1 – x0)/x0]×100 

n  Percentage point change is the raw change in 
percentages 

 

 Please take care to get this right in 
description of your empirical results 

 
 



Models with quadratic terms [Part 1] 

n  Consider y = β0 + β1x + β2x2 + u 
n  Partial effect of x is given by… 

q  What is different about this partial effect 
relative to everything we’ve seen thus far? 

n  Answer = It depends on the value of x.  So, we will 
need to pick a value of x to evaluation (e.g.    ) 

 
 

( )1 22y x xβ βΔ = + Δ

x



Models with quadratic terms [Part 2] 

n  If                    , then it has parabolic relation 

q  Turning point = Maximum =  
q  Know where this turning point is!  Don’t claim a 

parabolic relation if it lies outside range of x! 
q  Odd values might imply misspecification or simply 

mean the quadratic terms are irrelevant and should 
be excluded from the regression 

 
 

1 2
ˆ ˆ0, 0β β> <

1 2
ˆ ˆ/ 2β β



Linear Regression – Outline  

n  The CEF and causality (very brief) 

n  Linear OLS model 

n  Multivariate estimation 

q  Properties & Interpretation 
q  Partial regression interpretation 
q  R2, bias, and consistency 

n  Hypothesis testing 
n  Miscellaneous issues 



Motivation  

n  Rather uncommon that we have 
just one independent variable 

q  So, now we will look at multivariate 
OLS models and their properties… 



Basic multivariable model 

n  Example with constant and k regressors 

n  Similar identifying assumptions as before 

q  No collinearity among covariates [why?] 

q  E(u|x1,…, xk) = 0 

n  Implies no correlation between any x and u, which 
means we have the correct model of the true causal 
relationship between y and (x1,…, xk) 

0 1 1 ... k ky x x uβ β β= + + + +



Interpretation of estimates 

n  Estimated intercept,     , is predicted 
value of y when all x = 0; sometimes this 
makes sense, sometimes it doesn’t 

n  Estimated slopes,                 , have a 
more subtle interpretation now… 

q  How would you interpret      ?  

0β̂

( )1̂
ˆ,..., kβ β

1̂β

0 1 1
ˆ ˆ ˆ ˆ... k ky x x uβ β β= + + + +



Interpretation – Answer  

n  Estimated slopes,                 , have partial 
effect interpretations 

n  Typically, we think about change in just one 
variable, e.g. Δ x1, holding constant all other 
variables, i.e. (Δx2,…, Δxk all equal 0) 

q  This is given by  
q  I.e.     is the coefficient holding all else fixed 

(ceteris paribus) 

1 1
ˆŷ xβΔ = Δ

1̂β

( )1̂
ˆ,..., kβ β



Interpretation continued… 

n  But, can also look at how changes in 
multiple variables at once affects 
predicted value of y 

q  I.e. given changes in x1 through xk             
we obtain the predicted change in y, Δy 

1 1
ˆ ˆˆ ... k ky x xβ βΔ = Δ + + Δ



Example interpretation – College GPA 

n  Suppose we regress college GPA onto high 
school GPA (4-point scale) and ACT score 
for N = 141 university students 

q  What does the intercept tell us? 
q  What does the slope on hsGPA tell us? 

1.29 0.453 0.0094colGPA hsGPA ACT= + +



Example – Answers  

n  Intercept pretty meaningless… person with 
zero high school GPA and ACT doesn’t exist 

n  Example interpretation of slope… 

q  Consider two students, Ann and Bob, with 
identical ACT score, but Ann’s GPA is 1 point 
higher than Bob.  Best prediction of Ann’s college 
GPA is that it will be 0.453 higher than Bob’s 



Example continued… 

n  Now, what is effect of increasing high school 
GPA by 1 point and ACT by 1 point? 

0.453 0.0094
0.453 0.0094
0.4624

colGPA hsGPA ACT
colGPA
colGPA

Δ = ×Δ + ×Δ
Δ = +
Δ =



Example continued… 

n  Lastly, what is effect of increasing high school 
GPA by 2 points and ACT by 10 points? 

0.453 0.0094
0.453 2 0.0094 10
1

colGPA hsGPA ACT
colGPA
colGPA

Δ = ×Δ + ×Δ
Δ = × + ×
Δ =



Fitted values and residuals 

n  Definition of residual for observation i,  

 

n  Properties of residual and fitted values 

q  Sample average of residuals = 0; implies that 
sample average of     equals sample average of y 

q  Sample covariance between each independent 
variable and residuals = 0 

q  Point of means                     lies on regression line 

ˆ ˆi i iu y y= −

ˆiu

ŷ

1( , ,..., )ky x x



Tangent about residuals 

n  Again, it bears repeating… 

q  Looking at whether the residuals are correlated 
with the x’s is NOT a test for causality 

q  By construction, they are uncorrelated with x 
q  There is no “test” of whether the CEF is the 

causal CEF; that justification will need to rely 
on economic arguments 



n  The CEF and causality (very brief) 

n  Linear OLS model 

n  Multivariate estimation 

q  Properties & Interpretation 
q  Partial regression interpretation 
q  R2, bias, and consistency 

n  Hypothesis testing 
n  Miscellaneous issues 

Linear Regression – Outline  



Question to motivate the topic… 

n  What is wrong with the following? And why? 

q  Researcher wants to know effect of x on y                 
after controlling for z 

q  So, researcher removes the variation in y that is  
driven by z by regressing y on z  & saves residuals 

q  Then, researcher regresses these residuals on x and 
claims to have identified effect of x on y controlling 
for z using this regression 

We’ll answer why it’s 
wrong in a second… 



Partial regression [Part 1] 

n  The following is quite useful to know… 
n  Suppose you want to estimate the following 

q  Is there another way to get     that doesn’t 
involve estimating this directly? 

n  Answer: Yes!  You can estimate it by regressing the 
residuals from a regression of y on x2 onto the 
residuals from a regression of x1 onto x2 

0 1 1 2 2y x x uβ β β= + + +

1̂β



Partial regression [Part 2] 

n  To be clear, you get     , by… 

#1 – Regress y on x2; save residuals (call them    ) 
 

#2 – Regress x1 on x2; save residuals (call them     ) 
 

#3 – Regress     onto     ; the estimated coefficient 
will be the same as if you’d just run the original 
multivariate regression!!! 

1̂β

  !y

  !x

  !y   !x



Partial regression – Interpretation  

n  Multivariate estimation is basically finding 
effect of each independent variable after 
partialing out effect of other variables 

q  I.e. Effect of x1 on y after controlling for x2, (i.e. 
what you’d get from regressing y on both x1 and 
x2) is the same as what you get after you partial 
out the effect x2 from both x1 and y and then run 
a regression using the residuals 



Partial regression – Generalized  

n  This property holds more generally… 

q  Suppose X1 is vector of independent variables 
q  X2 is vector of more independent variables 
q  And, you want to know that coefficients on X1 that 

you would get from a multivariate regression of y 
onto all the variables in X1 and X2… 



Partial regression – Generalized, Part 2  

n  You can get the coefficients for each 
variable in X1 by… 

q  Regress y and each variable in X1 onto all the 
variables in X2 (at once), save residuals from 
each regression 

q  Do a regression of residuals; i.e. regress y 
onto variables of X1, but replace y and X1 
with the residuals from the corresponding 
regression in step #1 



Practical application of partial regression 

n  Now, what is wrong with the following?  

q  Researcher wants to know effect of x on y                 
after controlling for z 

q  So, researcher removes the variation in y that is  
driven by z by regressing y on z  & saves residuals 

q  Then, researcher regresses these residuals on x and 
claims to have identified effect of x on y controlling 
for z using this regression 



Practical application – Answer  

n  It’s wrong because it didn’t partial effect of 
z out of x!  Therefore, it is NOT the same 
as regressing y onto both x and z! 

n  Unfortunately, it is commonly done by 
researchers in finance [e.g. industry-adjusting] 

q  We will see how badly this can mess up things in 
a later lecture where we look at my paper with 
David Matsa on unobserved heterogeneity 



n  The CEF and causality (very brief) 

n  Linear OLS model 

n  Multivariate estimation 

q  Properties & Interpretation 
q  Partial regression interpretation 
q  R2, bias, and consistency 

n  Hypothesis testing 
n  Miscellaneous issues 

Linear Regression – Outline  



Goodness-of-Fit (R2) 

n  A lot is made of R-squared; so let’s 
quickly review exactly what it is 

n  Start by defining the following: 

q  Sum of squares total (SST) 
q  Sum of squares explained (SSE) 
q  Sum of squares residual (SSR) 

 



Definition of SST, SSE, SST 

( )

( )

2

1

2

1

2

1

ˆ

ˆ

N

i
i
N

i
i
N

i
i

SST y y

SSE y y

SSR u

=

=

=

= −

= −

=

∑

∑

∑

SST is total variation in y 

If  N is the number of  observations and the 
regression has a constant, then 

SSE is total variation in predicted y 
[mean of  predicted y = mean of  y] 

SSR is total variation in residuals 
[mean of  residual = 0] 



SSR, SST, and SSE continued… 

n  The total variation, SST, can be broken 
into two pieces… the explained part, 
SSE and unexplained part, SSR 

n  R2 is just the share of total variation that 
is explained!  In other words,  

SST = SSE + SSR 

R2 = SSE/SST = 1 – SSR/SST 



More about R2 

n  As seen on last slide, R2 must be 
between 0 and 1 

n  It can also be shown that R2 is equal 
to the square of the correlation 
between y and predicted y 

n  If you add an independent variable, 
R2 will never go down 

  



Adjusted R2 

n  Because R2 always goes up, we often use 
what is called Adjusted R2 

q  k = # of regressors, excluding the constant 
q  Basically, you get penalized for each additional 

regressor, such that adjusted R2 won’t go up after 
you add another variable if it doesn’t improve fit 
much [it can actually go down!] 

  

( )2 2 11 1
1

NAdjR R
N k

−⎛ ⎞= − − ⎜ ⎟− −⎝ ⎠



n  If I tell you the R2 is 0.014 from a 
regression, what does that mean?  Is it bad? 

q  Answer #1 = It means I’m only explaining 
about 1.4% of the variation in y with the 
regressors that I’m including in the regression 

q  Answer #2 = Not necessarily!  It doesn’t mean 
the model is wrong; you might still be getting a 
consistent estimate of the β you care about! 

Interpreting R2 



Unbiasedness versus Consistency 

n  When we say an estimate is unbiased          
or consistent, it means we think it has           
a causal interpretation… 

q  I.e. the CMI assumption holds and the x’s are 
all uncorrelated with the disturbance, u 

n  Bias refers to finite sample property; 
consistency refers to asymptotic property 



More formally… 

n  An estimate,    , is unbiased if  

q  I.e. on average, the estimate is centered around the 
true, unobserved value of β 

q  Doesn’t say whether you get a more precise 
estimate as sample size increases 

n  An estimate is consistent if  

q  I.e. as sample size increases, the estimate converges 
(in probability limit) to the true coefficient  

 

ˆ
N
plimβ β
→∞

=

β̂ ( )ˆE β β=



Unbiasedness of OLS 

n  OLS will be unbiased when… 
q  Model is linear in parameters 
q  We have a random sample of x 
q  No perfect collinearity between x’s 
q  E(u|x1,…, xk) = 0                                                   

[Earlier assumptions #1 and #2 give us this] 

n  Unbiasedness is nice feature of OLS; but in 
practice, we care more about consistency 
 



Consistency of OLS 

n  OLS will be consistent when 
q  Model is linear in parameters 
q  u is not correlated with any of the x’s,  
    [CMI assumptions #1 and #2 give us this] 

n  Again, this is good 
n  See textbooks for more information 

 



Summary of Today [Part 1] 

n  The CEF, E(y|x) has desirable properties 

q  Linear OLS gives best linear approx. of it 
q  If correlation between error, u, and independent 

variables, x’s, is zero it has causal interpretation 

n  Scaling & shifting of variables doesn’t affect 
inference, but can be useful 

 

q  E.g. demean to give intercepts more meaningful 
interpretation or rescale for cosmetic purposes 



Summary of Today [Part 2] 

n  Multivariate estimates are partial effects 

q  I.e. effect of x1 holding x2,…, xk constant 
q  Can get same estimates in two steps by first 

partialing out some variables and regressing 
residuals on residuals in second step 



Assign papers for next week… 

n  Angrist (AER 1990) 

q  Military service & future earnings 

n  Angrist and Lavy (QJE 1999) 

q  Class size & student achievements 

n  Acemoglu, et al. (AER 2001)  

q  Institutions and economic development 

These seminal 
papers in 

economics with 
clever identification 

strategies…        
i.e., what we aspire 
to learn about later 

in the course 



In First Half of Next Class 

n  Finish discussion of the linear regression 

q  Hypothesis testing 
q  Irrelevant regressors & multicollinearity 
q  Binary variables & interactions 

n  Relevant readings; see syllabus 




