FIN 620
Emp. Methods in Finance

Lecture 1 — Linear Regression I

Professor Todd Gormley



‘ Today’s Agenda

= Introduction
= Discussion of Syllabus

m Review of linear regressions

My expectation is that

you’ve seen most of this Despite trying to do much
before; but it is helpful to of it without math; today’s
review the key ideas that lecture likely to be long
are useful in practice and tedious... (sorry)

(without all the math)




‘ Linear Regression — Outline

# The CEF and causality (very brief)
m Linear OLS model

= Multivariate estimation

= Hypothesis testing

m Miscellaneous issues

N

We will cover the latter
two in the next lecture




‘ Background readings

= Angrist and Pischke
Q Sections 3.1-3.2, 3.4.1

= Wooldridge
O Sections 4.1 &> 4.2

= Greene
a Chapter 3 and Sections 4.1-4.4, 5.7-5.9, 6.1-6.2

s Cohn, Liu, Wardlaw (JFE 2022)




Motivation

m Linear regression is arguably the most popular
modeling approach in corporate finance

0 Transparent and intuitive
0 Very robust technique; easy to build on

0 Even if not interested in causality, it 1s useful for
describing the data

Given importance, we will spend today &
next lecture reviewing the key ideas




‘ Motivation continued...

m As researchers, we are interested
explaining how the world works

0 E.g., how are firms’ choices regarding leverage
explained by their investment opportunities

= le, if investment opportunities suddenly jumped
for some random reason, how would we expect
firms’ leverage to respond on averager

0 More broadly, how is y explained by x;, where
both y and x are random variables?




‘ Linear Regression — Outline

m The CEF and causality (very brief)

0 Random variables & the CEF
0 Using OLS to learn about the CEF
0 Briefly describe “causality”

m [inear OLS model
m Multivariate estimation
» Hypothesis testing

m Miscellaneous issues




‘ A bit about random wvariables

m [t is useful know that any random variable y
can be written as

y=E(y|x)+e
where (y, x, €) are random variables and E(g|x)=0

0 E(y|x)1s expected value of y given x
0 In words, y can be broken down into part
‘explained’ by x, E(y|x), and a piece that is

mean independent of x; €




' Conditional expectation function (CEF)

= E(y|x) 1s what we call the CEF, and
it has very desirable properties

0 Natural way to think about relationship
between x and y

0 And it 1s best predictor of y given x
1N a2 minitmum mean—squared error sense

= Le, E(y|x) minimizes E[(y-m(x))?],where
m(x) can be any function of x.




'CEF visually. ..

= E(y|x) 1s tixed, but unobservable

y

Our goal is
to learn about

the CEF

E(ylx) =c

v T T
%y Xz X2 X

= Intuition: for any value of x;, distribution
of y 1s centered about E(y| x)




‘ Linear Regression — Outline

m The CEF and causality (very brief)

0 Random variables & the CEF
0 Using OLS to learn about the CEF

0 Briefly describe “causality”
m Linear OLS model

m Multivariate estimation
» Hypothesis testing

m Miscellaneous issues




Linear regression and the CEF

= If done correctly, a linear regression can
help us uncover what the CEF is

m Consider linear regression model, y = fx+u

0y = dependent variable
0 x = independent variable
0 # = error term (or disturbance)

0 B = slope parameter




'Some additional terminology

m Other terms for y... ® Other terms for x...
0 Outcome variable 0 Covariate
0 Response variable 0 Control variable
0 Explained variable 0 Explanatory variable
0 Predicted variable 0 Predictor variable
0 Regressand 0 Regressor




Details about Y =pxtu

® (9, x, #) are random variables
= (y, x) are observable

= (u, f) are unobservable

0 # captures everything that determines y after
accounting tor x [Ths might be a lot of stuff!]

0 We want to estimate [3




‘ Ordinary Least Squares (OLS)

= Simply put, OLS finds the f that

minimizes the mean-squared error
B =argmin = E[(y —bx)’]
b

m Using first order condition: E[x(y-6x)]=0,
we have B=E(xy)/E(x?)

= Note: by definition, the residual from this
regression, y-fx, 1s uncorrelated with x




What oreat about this linear regression?

= [t can be proved that...

0 fxis best* linear prediction of y given x

0 fx1s best* linear approximation of E(y|x)

* ‘best’ in terms of minimum mean—squared error

m This 1s quite useful. l.e., even if E(y|x) 1s
nonlinear, the regression gives us the best
linear approximation of it




‘ Linear Regression — Outline

m The CEF and causality (very brief)

0 Random variables & the CEF
0 Using OLS to learn about the CEF
0 Briefly describe “causality”

m [inear OLS model
m Multivariate estimation
» Hypothesis testing

m Miscellaneous issues




'What about causality?

m Need to be careful here...

0 How x explains y, which this regression
helps us understand, is not the same as
learning the causal effect of xon y

0 For that, we need more assumptions...




‘ The basic assumptions /Part 1]

u Assumption #1: E(u) = 0

0 With intercept, this is totally innocuous

0 Just change regression to y = a + fx + 4,
where « 1s the intercept term

Now suppose, FE(#)=4,70

d

We could rewrite » = £ + w, where E(w)=0
Then, model becomes y = (@ + &) + fx +
Intercept is now just « + £, and error, w, 1S mean zero

L.e., Any non-zero mean is absorbed by intercept




‘ The basic assumptions [Part 2]

Intuition?

u Assumption B#2: E(u|x) = E(u)

0 In words, average of # (i.e., unexplained portion
of ) does not depend on value of x
0 This is “conditional mean independence” (CMI)

= True if x and # are independent of each other

= Implies # and x are uncorrelated

This is the key assumption being made
when people make causal inferences




CMI Assumption

m Basically, assumption says you’ve got correct
CEF model for causal effect of x on y

d

CEF is causal if it describes differences in
average outcomes for a change in x

= 1e., change in y if x increases from values a to 4 is

equal to E(y|x=b0)—-E(y| x=a) [In words?]

Fasy to see that this is only true if E(#|x) = E(#)
[This ts done on next slide. .. ]




‘ FExample of why CMI is needed

= With model y = o + fx + #,

0 E@y|x=a) =a + fa+ E(u|x=a)

0 E@y|x=b) = a+ b+ E(u|x=b)

0 Thus, E(y|x=b) — E(y| x=a) =
B(b-a) + E(u|x=b) — E(u| x=a)

0 'This only equals what we think of as the ‘causal’
etfect of x changing from a to b it E(u|x=b) =
E(|x=a)... 1.e., CMI assumption holds




‘ Tangent — CMI versus correlation

s CMI (which implies x and # are
uncorrelated) 1s needed for no bias

[which is a finite sample property]

= However, we only need to assume a zero
correlation between x and # for consistency

[which is a large sample property]

0 More about bias »s. consistency later; but we
typically care about consistency, which 1s why
I'll often retfer to correlations rather than CMI




s it plausible?

# Admittedly, there are many reasons why
this assumption might be violated

0 Recall, # captures all the factors that affect y
other than x... It will contain a lot!

0 Let’s just do a couple of examples...




Ex. #1 — Capital structure regression

= Consider following firm-level regression:
Leverage, = a + BProfitability, +u,

0 CMI implies average # is same for each profitability

0 Easy to find a few stories why this 1sn’t true...

= #1 — unprofitable firms tend to have higher bankruptcy risk,
which by tradeotf theory, should mean a lower leverage

= #2 —unprofitable firms have accumulated less cash, which
by pecking order means they should have more leverage




‘ EX. #2 - Iﬁvestmeﬁt Measure of

investment
opportunities

= Consider following firm-level regression:

Investment, = a + O, +u,

0 CMI implies average # is same for each Tobin’s Q

0 Easy to find a few stories why this 1sn’t true...

s #1 — Firms with low Q might be in distress & invest less

= #2 — Firms with high Q might be smaller, younger firms
that have a harder time raising capital to fund investments




s there a way to test for CMI?

m Let j be the predicted value of y, 1.e.
y=a+ Bx, where a and  are OLS estimates

N

= And, let u# be the residual, i.e. i =y—y

= Can we prove CMI if residuals are E(z1 )=0
and 1f 74 1s uncorrelated with x?

0 Answer: No! By construction, these residuals are
mean zero and uncorrelated with x. See earlier
derivation of OLS estimates




Identification police

= What people call the “identification police”
are those that look for violations of CMI

0 Ie., the “police” look for a reason why the
model’s disturbance is correlated with x

= Unfortunately, it’s not that hard...

= Trying to find ways to ensure the CMI
assumption holds and causal inferences can be
made will be a key focus of this course




‘ A side note about “‘endogeneity’’
g y

= Many “police” will criticize a model by
saying it has an “endogeneity problem™ but
then don’t say anything further...

= But what does it mean to say there is an
“an endogeneity problem”?




‘ A side note about “‘endogeneity’’
g y

= My view: such vague “endogeneity’ critics
suspect something is potentially wrong, but
don’t really know why or how

0 Don’t let this be you! Be specific about
what the problem is!

= Violations to CMI can be roughly
categorized into three bins... which are?




' Three reasons why CMI is violated

m Omitted variable bias
m Measurement error bias

= Simultaneity bias

0 We will look at each of these in much
more detail in the “Causality” lecture




‘What “endogenous’” means to me

= An “endogenous” x 1s when its value depends
on y (l.e., it 1s determined jointly with y such
that there 1s simultaneity bias).

0 However, some use a broader definition to
mean any correlation between x and #

Je.g., Roberts & Whited (20117)]

0 Because of the confusion, I avoid using
“endogeneity”’; I'd recommend the same for you

= [Le., Be specific about CMI violation; e.g., just say
omitted variable, measurement error, or simultaneity bias




‘ A note about presentations...

m Think about “causality” when presenting
papers in the next two classes

0 I haven’t yet formalized the various reasons for
why “causal” inferences shouldn’t be made; but
I’d like you to take a stab at thinking about it




‘ Linear Regression — Outline

# The CEF and causality (very brief)
® Linear OLS model

0 Basic interpretation
0 Rescaling & shifting of variables

0 Incorporating non-linearities

m Multivariate estimation
» Hypothesis testing

m Miscellaneous issues




‘ Interpreting the estimates

= Suppose I estimate the following model of
CEO compensation

salary. =a + BROE, +u,
0 Salary for CEO 71s in $000s; ROE 1s a %

m If you get... d=963.2

N

B =18.50

2 What do these coefficients tell us?
0 Is CMI likely satisfied?




‘ Interpreting the estimates — Answers

salary, =963.2+18.5ROE, +u,

m What do these coefficients tell us?

0 1 percentage point increase in ROE 1s
associated with $§18,500 increase in salary

0 Average salary for CEO with ROE =0
was equal to $963,200

= Is CMI likely satisfied? Probably not




‘ Linear Regression — Outline

# The CEF and causality (very brief)
® Linear OLS model

0 Basic interpretation
0 Rescaling & shifting of variables

0 Incorporating non-linearities

m Multivariate estimation
» Hypothesis testing

m Miscellaneous issues




‘ Scaling the dependent variable

» What it I change measurement of salary from

$000s to $s by multiplying it by 1,000?

o Estimates were... @ =963.2
3=18.50

& = 963,200
B =18,500

0 Now, they will be...




‘ Scaling y continued...

= Scaling y by an amount ¢ just causes all the
estimates to be scaled by the same amount

0 Mathematically, easy to see why...

y=a+ fx+u

cy = (ca)+(c,8)x+cu

y;

New intercept New slope




‘ Scaling y continued...

= Notice, the scaling has 7o effect on the
relationship between ROE and salary

0 I.e., because y is expressed in §s now, ,é = 18,500
means that a one percentage point increase in ROE
is still associated with $18,500 increase in salary




‘ Scaling the mdependent variable

= What if I instead change measurement
of ROE from percentage to decimal?

(i.e., multiply ROE by 1/100)

0 Hstimates were... a =963.2
B3 =18.50

963.2
1,850

a
0 Now, they will be...
p




‘ Scaling x continued. ..

= Scaling x by an amount £ just causes the

slope on x to be scaled by 1/4

0 Mathematically, easy to see why...
Will interpretation of
estimates change?

y=a+Bx+u

y:a+(§)kx+u

N

Answer: Again, no!

New slope




‘ Scaling both x and y

= If we scale y by an amount ¢ and x by
amount £ , then we get...

0 Intercept scaled by ¢
0 Slope scaled by ¢/ £

y=a+ fx+u
cy:(c ) (Cl'fjkx+cu

» When is scaling useful?




Practical application of scaling #

m No one wants to see a coefficient of

0.000000456 or 1,234,567,890

m Just scale the variables for cosmetic purposes!

0 It will affect coefficients & SEs

0 However, 1t won’t affect £stats or inference




‘ Practical application of scaling #2 /P7/

» To improve interpretation, in terms of
estimated magnitudes, it’s helpful to scale the
variables by their sample standard deviations

0 Let o, and o, be sample standard deviations of x
and y respectively

0 Let ¢, the scalar for y, be equal to 1/0,
0 Let £, the scalar for x, be equal to 1/0,

0 Ie., units of x and y are now standard deviations




Practical application of scaling #

42 [P2]

= With the prior rescaling, how would we
interpret a slope coetficient ot 0.25°

0 Answer = a 1 s.d. increase in X 1s associated
with V4 s.d. increase in y

0 The slope tells us how many standard

deviations y changes, on average, for a
standard deviation change in x

0 Is 0.25 large in magnitude? What about 0.017




‘ Shifting the variables

= Suppose we instead add ¢ to y and £ to x
(1.e., we shift y and x up by ¢ and £ respectively)

= Will the estimated slope change?




‘ Shifting continued. ..

= No! Only the estimated intercept will change

0 Mathematically, easy to see why...

y=a+ fx+u

y+c=a+c+ fx+u
y+te=a+c+f(x+k)-Pk+u
yv+e=(a+c—pk)+p(x+k)+u

N

New 1Ilt€1‘C€pt SlOpC the same




‘ Practical application ot shifting

= To improve interpretation, sometimes helptul
to demean x by its sample mean

0 Let u,. be the sample mean of x; regress y on x - U,

0 Intercept now reflects expected value of y for x =L,

y=(otPu, )+ Blx—p, ) +u
E(ylx=p)=(o+pu,)
0 This will be very useful when we get to diff-in-diffs




‘ Break Time

m |et’s take a 10-minute break




‘ Linear Regression — Outline

# The CEF and causality (very brief)
® Linear OLS model

0 Basic interpretation
0 Rescaling & shifting of variables

0 Incorporating non-linearities

m Multivariate estimation
» Hypothesis testing

m Miscellaneous issues




‘ Incorporating nonlinearities /Part 1/

m Assuming that the causal CEF is linear
may not always be that realistic

0 E.g., consider the following regression
wage = o+ Beducation + u

0 Why might a linear relationship between #
of years of education and level of wages be
unrealistic’ How can we fix it?




‘ Incorporating nonlinearities /Part 2/

= Better assumption might be that each year of
education leads to a constant proportionate
(L.e., percentage) 1Increase 1n wages

0 Approximation of this intuition captured by...
In(wage) = o+ Beducation + u

0 ILe., the linear specification is very flexible

because it can capture linear relationships
between non-linear variables




‘ Common nonlinear function forms

m Regressing Levels on Logs

= Regressing L.ogs on Levels

m Regressing Logs on Logs

Let’s discuss how to interpret each of these




' The usefulness of log

m Log variables are useful because

100X Aln(y) = %Ay

0 Note: When I (and others) say “Log”, we
really mean the natural logarithm, “Ln”.
E.g., it you use the “log” function in Stata,
it assumes you meant “In”




‘ Interpreting log-level regressions

= If you estimate the In(wage) equation, 10083
will tell you the %Awage for an additional
year of education. To see this...

In(wage) = a + Pfeducation + u
Aln(wage) = fAeducation

100 x Aln(wage) = (100 ) Aeducation
Y%Awage = (100 f)Aeducation




‘ Log-level interpretation continued. ..

m The proportionate change in y for a
given change in x is assumed constant

0 The change in y 1s not assumed to be
constant... it gets larger as x increases

0 Specifically, In(y) is assumed to be linear in
x; but y is not a linear function of x...

In(y)=a+ fx+u
y=exp(a+ fx+u)




‘ Example interpretation

= Suppose you estimated the wage equation
(where wages are $/hour) and got...

In(wage) = 0.584 + 0.083education

0 What does an additional year of education get you?

Answer = 8.3% increase in wages.

0 Any potential problems with the specification?

0 Should we interpret the intercept?




‘ Interpreting /og-/og regressions

m If you alternatively estimate the following...
In(y)=a+ flIn(x)+u

m 3 1s the elasticity of y w.r.t. x!

0 1e., B is the percentage change in y for a
percentage change in x

0 Note: regression assumes constant elasticity
between y and x regardless of level of x




‘ Example interpretation ot log-log

= Suppose you estimated the CEO salary model
using logs and got the following:

In(salary) = 4.822 + 0.257In(sales)

= What is the interpretation of 0.2577

Answer = For each 1% increase in
sales, salary increases by 0.257%




‘ Interpreting level-log regressions

m If estimating the following...
y=a+ fIn(x)+u

= (3/100 is the change in y for 1% change x




‘ Example interpretation of level-log

= Suppose you estimated the CEO salary
model using logs and got the following,
where salary 1s expressed in $000s:

salary = 4.822 + 1,812.5In(sales)

= What is the interpretation of 1,812.5?

Answer = For each 1% increase in
sales, salary increases by $18,125




‘ Summary of log functional forms

Dependent Independent

Model Interpretation of {3

Variable Variable
Level-Level y X dy = Pdx
Level-Log y In(x) dy = (6/100)%0dx
Log-Level In(y) X %dy = (1008)dx
Log-Log In(y) In(x) Yody = B %odx

= Now, let’s talk about what happens if
you change units (1.e., scale) for either y
or x in these regressions...




‘ Rescaling logs doesn’t matter [Part 7]

= What happens to intercept & slope if rescale
(1.e., change units) of y when in log form?

= Answer = Only intercept changes; slope
unaffected because it measures proportional
change in y in Log-Level model

log(y)=a+ Bx+u
log(c)+log(y)=log(c)+a+ fx+u
log(cy) = (log(c) + 0() + fbx+u




‘ Rescaling logs doesn’t matter [Part 2]

m Same logic applies to changing scale of x in
level-log models... only intercept changes

y=a+ flog(x)+u
y+ Plog(c)=a + flog(x)+ Blog(c)+u
y = (05 —,Blog(c)) + flog(cx)+u




‘ Rescaling logs doesn’t matter [Part 3]

= Basic message — If you rescale a logged variable,
it will not affect the slope coeftficient because you
are only looking at proportionate changes




‘ Log approximation problems

= | once discussed a paper where author
argued that allowing capital inflows into
country caused -120% change in stock
prices during crisis periods...

0 Do you see a problem with this?

= Of course!l A 120% drop in stock prices isn’t
possible. The true percentage change was -70%.
Here 1s where that author went wrong...




‘ Log approximation problems [Part 1]

= Approximation error occurs because as true
%Ay becomes larger, 100Aln(y)=%Ay

becomes a worse approximation

= To see this, consider a change from y to y'...

!

0 Ex. #1: 272 50 and 100Aln(y) = 4.9%
y

'

Yy
Y

0 Ex. #2: = 75%, but 100Aln(y)= 56%




‘ Log approximation problems [Part 2]

400.00%

350.00% — — — Approximation
W 0

Exact

300.00%

250.00%

200.00%

% Change y

150.00%

100.00%

50.00%

0.00%




‘ Log approximation problems /Part 3]

= Problem also occurs for negative changes

0 Ex.#1: 7Y
y

'

0 Ex. #2: 2 Y
y

_ _59%,, and 100Aln(y) = -5.1%

= —75%, but 100Aln(y)= -139%




‘ Log approximation problems /Part 4]

0 So, if implied percent change is large, better to convert
it to true % change before interpreting the estimate

In(y)=a+ fx+u
In(y") =In(y) = S(x=x)
In(y7y) = p(x'=x)
vy =exp(B(x'-x))
[(y'— )/ y]% = IOO[exp(,b’(x'— x)) —1}




‘ Log approximation problems /Part 5]

m We can now use this formula to see what

true % change in y is for x —x =1

-y

-y

% =100
% =100

:exp(ﬂ(x'— x)) —1]

exp(B)-1]

0 It = 0.56, the percent change isn’t 56%, it is

100 exp(0.56) -1 |=75%




‘ Recap of last two points on logs

= Two things to keep in mind about using logs

0 Rescaling a logged variable doesn’t affect slope
coetticients; it will only affect intercept

0 Log is only approximation for % change; it can
be a very bad approximation for large changes




 Usefulness of logs — Summary

m Using logs gives coefficients
with appealing interpretation

= Can be ignorant about unit of
measurement of log variables
since they’re proportionate As

m Logs of y or x can mitigate
influence of outliers




“Rules of thumb™ on when to use logs

= Helpful to take logs for variables with...

0 Positive currency amount

0 Large integral values (e.g., population)

= Don’t take logs for variables measured in
years or for variables that can equal zero...




‘ What about using In(1+y)?

m Because In(0) doesn’t exist, some use In(1+y)
for non-negative variables, i.e. y €[0,00)

0 However, you should not do this! Nice
interpretation no longer true, especially if a lot of
zeros or many small values in y [Why?/

w  Ex. #1: What does it mean to go from In(0) to In(x>0)?
n Ex. #2: And Ln(x"+1) — Ln(x+1) is not percent change of x

0 See Cohn, Liu, Wardlaw (JFE 2022) for solutions
& more details on why using In(1+9) is problematic




‘ Tangent — Percentage Change

= What is the percent change in
unemployment if it goes from 10% to 9%bo?

0 This 1s 10 percent drop
0 Itis a 1-percentage point drop

= Percentage change is [(x; — x()/x0] %100

= Percentage point change is the raw change in
percentages

Please take care to get this right in
description of your empirical results




‘ Models with quadratic terms /Part 1]

m Consider y =, + f,x + B + u

m Partial effect of x is given by...

Ay = (:Bl + 2182x)Ax

0 What is different about this partial effect
relative to everything we’ve seen thus far?

= Answer = It depends on the value of x. So, we will
need to pick a value of x to evaluate 1t (e.g. x)




‘ Models with quadratic terms /Part 2]

m If ,31 >0, ,32 <0, then it has parabolic relation

P25,

O Know where this turning point is/ Don’t claim a
parabolic relation if it lies outside range of x!

0 Turning point = Maximum =

0 Odd values might imply misspecification or simply
mean the quadratic terms are irrelevant and should
be excluded from the regression




‘ Linear Regression — Outline

# The CEF and causality (very brief)
® Linear OLS model
= Multivariate estimation

0 Properties & Interpretation

0 Partial regression interpretation

0 R?, bias, and consistency

» Hypothesis testing

m Miscellaneous issues




‘ Motivation

m Rather uncommon that we have
just one independent variable

2 So, now we will look at multivariate
OLS models and their properties...




‘ Basic multivariable model

= Example with constant and £ regressors

y=p0,+px +..+B.x +u
= Similar identifying assumptions as before

0 No collinearity among covariates [why?]
0 E(u|xy,....x) =0
= Implies no correlation between any x and #, which

means we have the correct model of the true causal
relationship between y and (x7,..., Xxp)




‘ Interpretation of estimates

= Estimated intercept, :éo , 1s predicted
value of y when all x = 0; sometimes this
makes sense, sometimes it doesn’t

= Estimated slopes, (ﬁl,...,ﬁk ), have a

more subtle interpretation now...

y=p8+px+.+Bx +u

0 How would you interpret 3 ?




‘ Interpretation — Answer

= Estimated slopes,( ,él,..., ,Bk ), have partial

etfect interpretations

m Typically, we think about change in just one
variable, e.g., A x;, holding constant all other
variables, i.e., (Ax,,..., Ax,all equal 0)

0 This is given by Aj = S Ax,
0 Le., ,5’1 is the coeftficient holding a// else fixed

(ceteris paribus)




‘ Interpretation continued...

» However, can also look at how changes
in multiple variables at once affects

predicted value of y

0 Ie., given changes in x; through x;,
we obtain the predicted change in y, Ay

AV = BAX, +...+ B Ax,




‘ Example interpretation — College GPA

= Suppose we regress college GPA onto high
school GPA (4-point scale) and ACT scores

for N = 141 university students

colGPA=1.29+0.453hsGPA+0.0094ACT

0 What does the intercept tell us?
0 What does the slope on 4sGPA tell us?




‘ Example — Answers

= Intercept meaningless... person with zero

high school GPA and ACT doesn’t exist

= Example interpretation of slope...

0 Consider two students, Ann and Bob, with
identical ACT score, but Ann’s GPA is 1 point
higher than Bob. Best prediction of Ann’s college
GPA 1s that it will be 0.453 higher than Bob’s




‘ Example continued. ..

= Now, what is etfect of increasing high school
GPA by 1 point and ACT by 1 point?

AcolGPA =0.453x AhsGPA+0.0094 x A ACT
AcolGPA =0.453+0.0094
AcolGPA =0.4624




‘ Example continued. ..

m Lastly, what is effect of increasing high school
GPA by 2 points and ACT by 10 points?

AcolGPA =0.453x AhsGPA+0.0094 x A ACT
AcolGPA =0.453x2+0.0094x10
AcolGPA =1




‘ Fitted values and residuals

= Definition of residual for observation 7, #.
u, =Yy, —J

= Properties of residual and fitted values

0 Sample average of residuals = 0; implies that
sample average of y equals sample average ot y

0 Sample covariance between each independent
variable and residuals = 0

0 Point of means (), X,,..., X, ) lies on regression line




‘ Tangent about residuals

m Again, it bears repeating. ..

0 Looking at whether the residuals are correlated
with the x’s 1s NOT a test for causality

0 By construction, they are uncorrelated with x

0 There 1s no “test” of whether the CEF i1s the
causal CEF; that justification will need to rely
On economic arguments




‘ Linear Regression — Outline

# The CEF and causality (very brief)
® Linear OLS model
= Multivariate esttmation

0 Properties & Interpretation

0 Partial regression interpretation

0 R?, bias, and consistency

» Hypothesis testing

m Miscellaneous issues




‘ Question to motivate the topic. ..

= What is wrong with the following? And why?

0 Researcher wants to know effect of x on y
after controlling for 2

0 So, researcher removes the variation in y that is
driven by g by regressing y on ¢ & saves residuals

0 Then, researcher regresses these residuals on x and
claims to have identified effect of x on y controlling
for 2 using this regression

We’ll answer why it’s
wrong in a second...




‘ Partial regression /Part 1]

m The following is quite usetul to know...

m Suppose you want to estimate the tollowing

y =0+ Bx + f,x, +u

0 Is there another way to get £, that doesn’t
involve estimating this directly?

= Answer: Yes! You can estimate it by regressing the
residuals from a regression of y on x, onto the
residuals from a regression of x; onto x,




‘ Partial regression /Part 2]

= To be clear, you get ,81 , by...

#1 — Regress y on x,; save residuals (call them j )
#2 — Regress x; on x,; save residuals (call them X )

#3 — Regress y onto ¥ ; the estimated coefficient
will be the same as if you’d just run the original
multivariate regression!!!




Partial regression — Interpretation

m Multivariate estimation 1s basically finding
effect of each independent variable after
partialing out effects of other variables

0 le., Etfect of x; on y after controlling for x,, (1.e.,
what you’d get from regressing y on both x; and
x,) 1s the same as what you get after you partial
out the effect x, from both x, and y and then run
a regression using the residuals




Partial regression — Generalized

= This property holds more generally...

0 Suppose X, is vector of independent variables
0 X, 1s vector of more independent variables

0 And, you want to know that coefficients on X, that
you would get from a multivariate regression of y
onto all the variables in X, and X,...




Partial regression — Generalized, Part 2

® You can get the coetficients for each
variable in X, by...

0 Regress y and each variable in X; onto all the
variables in X, (at once), save residuals from
each regression

0 Do a regression of residuals; i.e., regress y
onto variables of X, but replace y and X,
with the residuals from the corresponding
regression in step #1




' Practical application of partial regression

= Now, what is wrong with the following?

0 Researcher wants to know effect of x on y
after controlling for 2

0 So, researcher removes the variation in y that is
driven by g by regressing y on ¢ & saves residuals

0 Then, researcher regresses these residuals on x and
claims to have identified effect of x on y controlling
for 2 using this regression




' Practical application — Answer

m It’s wrong because it didn’t partial the effect
of z out of x! Therefore, it 1s NOT the

same as regressing y onto both x and g/

= Unfortunately, it was commonly done by
researchers in finance Je.g., industry-adjusting]

0 We will see how badly this can mess up things in
a later lecture where we look at my paper with
David Matsa on unobserved heterogeneity




‘ Linear Regression — Outline

# The CEF and causality (very brief)
® Linear OLS model
= Multivariate esttmation

0 Properties & Interpretation

0 Partial regression interpretation

0 R?, bias, and consistency

» Hypothesis testing

m Miscellaneous issues




' Goodness-of-Fit (R?)

m Alot

is made of R-squared; so, let’s

quickly review exactly what it is

m Start |

by defining the following:

0 Sum of squares total (SST)

0 Sum of squares explained (SSE)

0 Sum of squares residual (SSR)




'Definition of SST, SSE, SST

If N 1s the number of observations and the
regression has a constant, then

N
_\2
SST = E ,(J/,- -y ) SST is total variation in y
i=1

> 2 SSE is total variation in predicted y
SSL = YVi—V : _
1221:( ) [mean of predicted y = mean of y]

SSR = ZN:,)? SSR is total variation in residuals
rl [mean of residnal = 0]




‘ SSR, SST, and SSE continued...

m The total variation, SST, can be broken
into two pieces... the explained part,
SSE, and unexplained part, SSR

SST = SSE + SSR

m R“is just the share of total variation that
is explained! In other words,

R? =SSE/SST =1-SSR/SST




‘ More about R?

m As seen on last slide, R? must be
between 0 and 1

» It can also be shown that R* is equal
to the square of the correlation

between y and predicted y

= If you add an independent variable,
R? will never go down




Adjusted R?

» Because R*always goes up, we often use

what is called Adjusted R*

Adezzl—(l—Rz)(N]Y:kj

0 k= # of regressors, excluding the constant

0 Basically, you get penalized for each additional
regressor, such that adjusted R* won’t go up after
you add another variable if it doesn’t improve fit
much [it can go downl]




‘ Interpreting R?

m If I tell you the R*is 0.014 from a
regression, what does that mean? Is it bad?

0 Answer #1 = It means I'm only explaining
about 1.4% of the variation in y with the
regressors that I’'m including in the regression

0 Answer #2 = Not necessarily! It doesn’t mean
the model is wrong; you might still be getting a
consistent estimate of the 3 you care about!




 Unbiasedness versus Consistency

= When we say an estimate is unbiased
or consistent, it means we think it has
a causal interpretation...

0 Le., the CMI assumption holds and the x’s are
all uncorrelated with the disturbance, #

= Bias refers to finite sample property;
consistency refers to asymptotic property




More formally...

= An estimate, /3, is unbiased if E ( Vi ) =pf

0 Le., on average, the estimate is centered around the
true, unobserved value of {3

0 Doesn’t say whether you get a more precise
estimate as sample size increases

= An estimate is consistent if plim = [

N—>
0 le., as sample size increases, the estimate converges

(in probability limit) to the true coefficient




‘ Unbiasedness of OLS

m OLS will be unbiased when...

0 Model 1s linear in parameters
0 We have a random sample of x
0 No perfect collinearity between x’s
0 E(u|x,...,x) =0
[Earlier CMI assumptions %1 and #2 give us this]

= Unbiasedness 1s nice feature of OLS; but in
practice, we care more about consistency




‘ Consistency of OLS

m OLS will be consistent when

0 Model 1s linear in parameters

0 #1s not correlated with any of the x’s,

[CMI assumptions #1 and #2 give us this; a lack of
correlation is a weaker assumption than CMI... CMI
precludes both linear and non-linear relationships, while
correlations only measure linear relationships|

= Again, this is good

m See textbooks for more information




‘ Summary of Today [Part 1]

m The CEF, E(y|x) has desirable properties

0 Linear OLS gives best linear approx. of it

0 If correlation between error, #, and independent
variables, x’s, is zero it has causal interpretation

® Scaling & shifting of variables doesn’t affect
inference, but can be useful

0 E.g., demean to give intercepts more meaningful
interpretation or rescale for cosmetic purposes




‘ Summary of Today [Part 2]

m Multivariate estimates are partial effects

0 Ie., effect of x, holding x,,..., x, constant

0 Can get same estimates in two steps by first
partialing out some variables and regressing
residuals on residuals in second step




‘ Assign papers for next week. ..

= Angrist (AER 1990)

. . . These are seminal
0 Military service & tuture earnings papers in

. economics with
L Angrlst and Lavy (Q]E 1999) clever identification

strategies...
0 Class size & student achievements  i.e., what we aspire
to learn about later

N Acemoglu, et al. (AER 2001) in the course

0 Institutions and economic development




‘ In First Half of Next Class

= Finish discussion of the linear regression

0 Hypothesis testing
0 Irrelevant regressors & multicollinearity

0 Binary variables & interactions

= Relevant readings; see syllabus




