
FIN 620
Emp. Methods in Finance

Professor Todd Gormley

Lecture 1 –  Linear Regression I



Today’s Agenda

n Introduction
n Discussion of Syllabus
n Review of linear regressions

My expectation is that 
you’ve seen most of  this 
before; but it is helpful to 
review the key ideas that 
are useful in practice 
(without all the math)

Despite trying to do much 
of  it without math; today’s 
lecture likely to be long 
and tedious… (sorry)



Linear Regression – Outline 

n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues

We will cover the latter 
two in the next lecture



Background readings

n Angrist and Pischke
q Sections 3.1-3.2, 3.4.1

n Wooldridge
q Sections 4.1 & 4.2

n Greene
q Chapter 3 and Sections 4.1-4.4, 5.7-5.9, 6.1-6.2

n Cohn, Liu, Wardlaw (JFE 2022)



Motivation

n Linear regression is arguably the most popular 
modeling approach in corporate finance

q Transparent and intuitive
q Very robust technique; easy to build on
q Even if not interested in causality, it is useful for 

describing the data

 Given importance, we will spend today &         
next lecture reviewing the key ideas



Motivation continued…

n As researchers, we are interested 
explaining how the world works

q E.g., how are firms’ choices regarding leverage 
explained by their investment opportunities

n I.e., if investment opportunities suddenly jumped 
for some random reason, how would we expect 
firms’ leverage to respond on average?

q More broadly, how is y explained by x, where 
both y and x are random variables?



Linear Regression – Outline 

n The CEF and causality (very brief)

q Random variables & the CEF
q Using OLS to learn about the CEF
q Briefly describe “causality”

n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues



A bit about random variables

n It is useful know that any random variable y 
can be written as

where (y, x, ε) are random variables and E(ε|x)=0

q E(y|x) is expected value of y given x
q In words, y can be broken down into part 

‘explained’ by x, E(y|x), and a piece that is 
mean independent of x, ε

( | )y E y x e= +



Conditional expectation function (CEF)

n E(y|x) is what we call the CEF, and 
it has very desirable properties

q Natural way to think about relationship 
between x and y

q And it is best predictor of y given x     
in a minimum mean-squared error sense

n I.e., E(y|x) minimizes E[(y-m(x))2],where 
m(x) can be any function of x. 



CEF visually…

n E(y|x) is fixed, but unobservable

n Intuition: for any value of x, distribution 
of y is centered about E(y|x)

Our goal is         
to learn about 

the CEF



Linear Regression – Outline 

n The CEF and causality (very brief)

q Random variables & the CEF
q Using OLS to learn about the CEF
q Briefly describe “causality”

n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues



Linear regression and the CEF

n If done correctly, a linear regression can 
help us uncover what the CEF is

n Consider linear regression model,

q y = dependent variable
q x = independent variable 
q u = error term (or disturbance)
q β = slope parameter

y x ub= +



Some additional terminology

n Other terms for y…

q Outcome variable
q Response variable
q Explained variable
q Predicted variable
q Regressand

n Other terms for x…

q Covariate
q Control variable
q Explanatory variable
q Predictor variable
q Regressor



Details about y = βx + u

n (y, x, u) are random variables
n (y, x) are observable
n (u, β) are unobservable

q u captures everything that determines y after 
accounting for x [This might be a lot of stuff!]

q We want to estimate β



Ordinary Least Squares (OLS)

n Simply put, OLS finds the β that 
minimizes the mean-squared error

n Using first order condition: E[x(y-βx)]=0, 
we have β=E(xy)/E(x2)

n Note: by definition, the residual from this 
regression, y-βx, is uncorrelated with x

2argmin [( ) ]
b

E y bxb = = -



What great about this linear regression?

n It can be proved that…

q βx is best* linear prediction of y given x
q βx is best* linear approximation of E(y|x)

*  ‘best’ in terms of minimum mean-squared error

n This is quite useful.  I.e., even if E(y|x) is 
nonlinear, the regression gives us the best 
linear approximation of it



Linear Regression – Outline 

n The CEF and causality (very brief)

q Random variables & the CEF
q Using OLS to learn about the CEF
q Briefly describe “causality”

n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues



What about causality?

n Need to be careful here… 

q How x explains y, which this regression 
helps us understand, is not the same as 
learning the causal effect of x on y

q For that, we need more assumptions…



The basic assumptions [Part 1]

n Assumption #1: E(u) = 0
q With intercept, this is totally innocuous
q Just change regression to y = α + βx + u,   

where α is the intercept term
q Now suppose, E(u)=k≠0

n We could rewrite u = k + w, where E(w)=0
n Then, model becomes y = (α + k) + βx + w
n Intercept is now just α + k, and error, w, is mean zero
n I.e., Any non-zero mean is absorbed by intercept



The basic assumptions [Part 2]

n Assumption #2: E(u|x) = E(u)
q In words, average of u (i.e., unexplained portion 

of y) does not depend on value of x
q This is “conditional mean independence” (CMI)

n True if x and u are independent of each other
n Implies u and x are uncorrelated

 This is the key assumption being made 
when people make causal inferences

Intuition?



CMI Assumption

n Basically, assumption says you’ve got correct 
CEF model for causal effect of x on y

q CEF is causal if it describes differences in 
average outcomes for a change in x 

n i.e., change in y if x increases from values a to b is 
equal to E(y|x=b)–E(y|x=a)  [In words?]

q Easy to see that this is only true if E(u|x) = E(u) 
[This is done on next slide…]



Example of why CMI is needed

n With model y = α + βx + u, 

q E(y|x=a) = α + βa + E(u|x=a)
q E(y|x=b) = α + βb + E(u|x=b)
q Thus, E(y|x=b) – E(y|x=a) =                           

β(b-a) + E(u|x=b) – E(u|x=a)

q This only equals what we think of as the ‘causal’ 
effect of x changing from a to b if E(u|x=b) = 
E(u|x=a)… i.e., CMI assumption holds



Tangent – CMI versus correlation

n CMI (which implies x and u are 
uncorrelated) is needed for no bias           
[which is a finite sample property]

n However, we only need to assume a zero 
correlation between x and u for consistency  
[which is a large sample property]

q More about bias vs. consistency later; but we 
typically care about consistency, which is why 
I’ll often refer to correlations rather than CMI



Is it plausible?

n Admittedly, there are many reasons why 
this assumption might be violated

q Recall, u captures all the factors that affect y 
other than x… It will contain a lot!

q Let’s just do a couple of examples…



Ex. #1 – Capital structure regression

n Consider following firm-level regression:

q CMI implies average u is same for each profitability
q Easy to find a few stories why this isn’t true…

n #1 – unprofitable firms tend to have higher bankruptcy risk, 
which by tradeoff theory, should mean a lower leverage

n #2 – unprofitable firms have accumulated less cash, which 
by pecking order means they should have more leverage 

i i iLeverage Profitability ua b= + +



Ex. #2 – Investment

n Consider following firm-level regression:

q CMI implies average u is same for each Tobin’s Q
q Easy to find a few stories why this isn’t true…

n #1 – Firms with low Q might be in distress & invest less
n #2 – Firms with high Q might be smaller, younger firms 

that have a harder time raising capital to fund investments

i i iInvestment Q ua b= + +

Measure of  
investment 

opportunities



Is there a way to test for CMI?

n Let     be the predicted value of y, i.e.                                
Ttttt , where α and β are OLS estimates

n And, let     be the residual, i.e.
n Can we prove CMI if residuals are E(   )=0   

and if      is uncorrelated with x?

q Answer: No!  By construction, these residuals are 
mean zero and uncorrelated with x.  See earlier 
derivation of OLS estimates

ŷ
ŷ xa b= +

û ˆ ˆu y y= -

û
û



Identification police

n What people call the “identification police” 
are those that look for violations of CMI

q I.e., the “police” look for a reason why the 
model’s disturbance is correlated with x
n Unfortunately, it’s not that hard…
n Trying to find ways to ensure the CMI 

assumption holds and causal inferences can be 
made will be a key focus of this course



A side note about “endogeneity”

n Many “police” will criticize a model by 
saying it has an “endogeneity problem” but 
then don’t say anything further…

n But what does it mean to say there is an 
“an endogeneity problem”?



A side note about “endogeneity”

n My view: such vague “endogeneity” critics 
suspect something is potentially wrong, but 
don’t really know why or how
q Don’t let this be you!  Be specific about 

what the problem is!

n Violations to CMI can be roughly 
categorized into three bins… which are?



Three reasons why CMI is violated

n Omitted variable bias
n Measurement error bias
n Simultaneity bias

q We will look at each of these in  much 
more detail in the “Causality” lecture



What “endogenous” means to me

n An “endogenous” x is when its value depends 
on y (i.e., it is determined jointly with y such 
that there is simultaneity bias).  
q However, some use a broader definition to                 

mean any correlation between x and u                  
[e.g., Roberts & Whited (2011)]

q Because of the confusion, I avoid using 
“endogeneity”; I’d recommend the same for you
n I.e., Be specific about CMI violation; e.g., just say 

omitted variable, measurement error, or simultaneity bias



A note about presentations…

n Think about “causality” when presenting 
papers in the next two classes
q I haven’t yet formalized the various reasons for 

why “causal” inferences shouldn’t be made; but 
I’d like you to take a stab at thinking about it



Linear Regression – Outline 

n The CEF and causality (very brief)
n Linear OLS model

q Basic interpretation
q Rescaling & shifting of variables
q Incorporating non-linearities

n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues



Interpreting the estimates
n Suppose I estimate the following model of 

CEO compensation

q Salary for CEO i is in $000s; ROE is a %

n If you get…

q What do these coefficients tell us?
q Is CMI likely satisfied?

i i isalary ROE ua b= + +

ˆ 963.2
ˆ 18.50

a

b

=

=



Interpreting the estimates – Answers 

n What do these coefficients tell us?
q 1 percentage point increase in ROE is 

associated with $18,500 increase in salary
q Average salary for CEO with ROE = 0 

was equal to $963,200

n Is CMI likely satisfied?  Probably not

963.2 18.5i i isalary ROE u= + +



Linear Regression – Outline 

n The CEF and causality (very brief)
n Linear OLS model

q Basic interpretation
q Rescaling & shifting of variables
q Incorporating non-linearities

n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues



Scaling the dependent variable

n What if I change measurement of salary from 
$000s to $s by multiplying it by 1,000?

q Estimates were… 

q Now, they will be…

ˆ 963.2
ˆ 18.50

a

b

=

=

ˆ 963,200
ˆ 18,500

a

b

=

=



Scaling y continued…

n Scaling y by an amount c just causes all the 
estimates to be scaled by the same amount
q Mathematically, easy to see why…

( ) ( )
y x u
cy c c x cu

a b
a b

= + +

= + +

New intercept New slope



Scaling y continued…

n Notice, the scaling has no effect on the 
relationship between ROE and salary

q I.e., because y is expressed in $s now,     = 18,500 
means that a one percentage point increase in ROE 
is still associated with $18,500 increase in salary

b̂



Scaling the independent variable

n What if I instead change measurement 
of ROE from percentage to decimal? 
(i.e., multiply ROE by 1/100)

q Estimates were… 

q Now, they will be…

ˆ 963.2
ˆ 18.50

a

b

=

=

ˆ 963.2
ˆ 1,850

a

b

=

=



Scaling x continued…

n Scaling x by an amount k just causes the 
slope on x to be scaled by 1/k

q Mathematically, easy to see why…

 

y =α + βx + u

y =α + β
k

⎛
⎝⎜

⎞
⎠⎟

kx + u

New slope

Will interpretation of  
estimates change?

Answer: Again, no!



Scaling both x and y

n If we scale y by an amount c and x by 
amount k , then we get…

q Intercept scaled by c
q Slope scaled by c/k

n When is scaling useful?

( )

y x u
ccy c kx cu
k

a b
ba

= + +

æ ö= + +ç ÷
è ø



Practical application of scaling #1

n No one wants to see a coefficient of 
0.000000456 or 1,234,567,890

n Just scale the variables for cosmetic purposes!

q It will affect coefficients & SEs
q However, it won’t affect t-stats or inference



Practical application of scaling #2 [P1]

n To improve interpretation, in terms of 
estimated magnitudes, it’s helpful to scale the 
variables by their sample standard deviations

q Let σx and σy be sample standard deviations of x 
and y respectively

q Let c, the scalar for y, be equal to 1/σy 
q Let k, the scalar for x, be equal to 1/σx 
q I.e., units of x and y are now standard deviations



Practical application of scaling #2 [P2]

n With the prior rescaling, how would we 
interpret a slope coefficient of 0.25?

q Answer = a 1 s.d. increase in x is associated 
with ¼ s.d. increase in y

q The slope tells us how many standard 
deviations y changes, on average, for a  
standard deviation change in x

q Is 0.25 large in magnitude?  What about 0.01?



Shifting the variables

n Suppose we instead add c to y and k to x     
(i.e., we shift y and x up by c and k respectively)

n Will the estimated slope change?



Shifting continued…

n No! Only the estimated intercept will change

q Mathematically, easy to see why…

( )
( ) ( )

y x u
y c c x u
y c c x k k u

y c c k x k u

a b
a b
a b b

a b b

= + +
+ = + + +

+ = + + + - +

+ = + - + + +

New intercept Slope the same



Practical application of shifting

n To improve interpretation, sometimes helpful 
to demean x by its sample mean
q Let μx be the sample mean of x; regress y on x - μx 
q Intercept now reflects expected value of y for x =μx

q This will be very useful when we get to diff-in-diffs
  

y = α + βµx( ) + β x − µx( ) + u

E( y | x = µx ) = α + βµx( )



Break Time

n Let’s take a 10-minute break



Linear Regression – Outline 

n The CEF and causality (very brief)
n Linear OLS model

q Basic interpretation
q Rescaling & shifting of variables
q Incorporating non-linearities

n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues



Incorporating nonlinearities [Part 1]

n Assuming that the causal CEF is linear 
may not always be that realistic

q E.g., consider the following regression

q Why might a linear relationship between # 
of years of education and level of wages be 
unrealistic?  How can we fix it?

wage = α+ βeducation + u



Incorporating nonlinearities [Part 2]

n Better assumption might be that each year of 
education leads to a constant proportionate 
(i.e., percentage) increase in wages

q Approximation of this intuition captured by…

q I.e., the linear specification is very flexible 
because it can capture linear relationships 
between non-linear variables

ln(wage) = α+ βeducation + u



Common nonlinear function forms

n Regressing Levels on Logs
n Regressing Logs on Levels
n Regressing Logs on Logs

Let’s discuss how to interpret each of these



The usefulness of log

n Log variables are useful because 
100×Δln(y) ≈ %Δy

q Note: When I (and others) say “Log”, we 
really mean the natural logarithm, “Ln”.  
E.g., if you use the “log” function in Stata, 
it assumes you meant “ln”



Interpreting log-level regressions

n If you estimate the ln(wage) equation, 100β 
will tell you the %Δwage for an additional 
year of education.  To see this…

ln( )
ln( )

100 ln( ) (100 )
% (100 )

wage education u
wage education

wage education
wage education

a b
b

b
b

= + +
D = D

´D = D
D » D



Log-level interpretation continued…

n The proportionate change in y for a 
given change in x is assumed constant

q The change in y is not assumed to be 
constant… it gets larger as x increases

q Specifically, ln(y) is assumed to be linear in 
x; but y is not a linear function of x… 

ln( )
exp( )
y x u

y x u
a b
a b

= + +
= + +



n Suppose you estimated the wage equation 
(where wages are $/hour) and got…

q What does an additional year of education get you?  

q Any potential problems with the specification?
q Should we interpret the intercept?

Example interpretation

ln(wage) = 0.584 + 0.083education

Answer = 8.3% increase in wages.



Interpreting log-log regressions

n If you alternatively estimate the following…

n β is the elasticity of y w.r.t. x!

q i.e., β is the percentage change in y for a 
percentage change in x

q Note: regression assumes constant elasticity 
between y and x regardless of level of x

ln( ) ln( )y x ua b= + +



n Suppose you estimated the CEO salary model 
using logs and got the following:

n What is the interpretation of 0.257?  

Example interpretation of log-log

ln(salary) = 4.822 + 0.257ln(sales)

Answer = For each 1% increase in 
sales, salary increases by 0.257%



Interpreting level-log regressions

n If estimating the following…

n β/100 is the change in y for 1% change x

ln( )y x ua b= + +



n Suppose you estimated the CEO salary 
model using logs and got the following, 
where salary is expressed in $000s:

n What is the interpretation of 1,812.5?  

Example interpretation of level-log

salary = 4.822 + 1,812.5ln(sales)

Answer = For each 1% increase in 
sales, salary increases by $18,125



Summary of log functional forms

n See syllabus…
n Now, let’s talk about what happens if 

you change units (i.e., scale) for either y 
or x in these regressions…

Model
Dependent 

Variable
Independent 

Variable Interpretation of β

Level-Level y x dy = βdx
Level-Log y ln(x) dy  = (β /100)%dx
Log-Level ln(y) x %dy = (100β )dx
Log-Log ln(y) ln(x) %dy  = β%dx



Rescaling logs doesn’t matter [Part 1]

n What happens to intercept & slope if rescale 
(i.e., change units) of y when in log form?

n Answer = Only intercept changes; slope 
unaffected because it measures proportional 
change in y in Log-Level model

( )

log( )
log( ) log( ) log( )

log( ) log( )

y x u
c y c x u

cy c x u

a b
a b
a b

= + +
+ = + + +

= + + +



Rescaling logs doesn’t matter [Part 2]

n Same logic applies to changing scale of x in 
level-log models… only intercept changes

( )

log( )
log( ) log( ) log( )

log( ) log( )

y x u
y c x c u

y c cx u

a b
b a b b

a b b

= + +
+ = + + +

= - + +



Rescaling logs doesn’t matter [Part 3]

n Basic message – If you rescale a logged variable, 
it will not affect the slope coefficient because you 
are only looking at proportionate changes



Log approximation problems

n I once discussed a paper where author 
argued that allowing capital inflows into 
country caused -120% change in stock 
prices during crisis periods…

q Do you see a problem with this?

n Of course! A 120% drop in stock prices isn’t 
possible.  The true percentage change was -70%.  
Here is where that author went wrong…



Log approximation problems [Part 1]

n Approximation error occurs because as true 
%Δy becomes larger, 100Δln(y)≈%Δy 
becomes a worse approximation

n To see this, consider a change from y to y'…

q Ex. #1:                     , and 100Δln(y) = 4.9%

q Ex. #2:                       , but 100Δln(y)= 56%

' 5%y y
y
-

=

' 75%y y
y
-

=



Log approximation problems [Part 2]



Log approximation problems [Part 3]

n Problem also occurs for negative changes

q Ex. #1:                      , and 100Δln(y) = -5.1%

q Ex. #2:                        , but 100Δln(y)= -139%

' 5%y y
y
-

= -

' 75%y y
y
-

= -



Log approximation problems [Part 4]

q So, if implied percent change is large, better to convert 
it to true % change before interpreting the estimate

( )
[ ] ( )

ln( )
ln( ') ln( ) ( ' )

ln( '/ ) ( ' )
'/ exp ( ' )

( ' ) / % 100 exp ( ' ) 1

y x u
y y x x

y y x x
y y x x

y y y x x

a b
b
b

b

b

= + +
- = -

= -

= -

é ù- = - -ë û



Log approximation problems [Part 5]

n We can now use this formula to see what 
true % change in y is for x’–x = 1

q If β = 0.56, the percent change isn’t 56%, it is

[ ] ( )
[ ] ( )
( ' ) / % 100 exp ( ' ) 1

( ' ) / % 100 exp 1

y y y x x

y y y

b

b

é ù- = - -ë û
é ù- = -ë û

( )100 exp 0.56 1 75%é ù- =ë û



Recap of last two points on logs

n Two things to keep in mind about using logs

q Rescaling a logged variable doesn’t affect slope 
coefficients; it will only affect intercept

q Log is only approximation for % change; it can 
be a very bad approximation for large changes



Usefulness of logs – Summary 

n Using logs gives coefficients 
with appealing interpretation

n Can be ignorant about unit of 
measurement of log variables 
since they’re proportionate Δs

n Logs of y or x can mitigate 
influence of outliers



“Rules of thumb” on when to use logs

n Helpful to take logs for variables with…

q Positive currency amount
q Large integral values (e.g., population)

n Don’t take logs for variables measured in 
years or for variables that can equal zero…



What about using ln(1+y)?

n Because ln(0) doesn’t exist, some use ln(1+y) 
for non-negative variables, i.e. 

q However, you should not do this!  Nice 
interpretation no longer true, especially if a lot of 
zeros or many small values in y  [Why?]

n Ex. #1: What does it mean to go from ln(0) to ln(x>0)?
n Ex. #2: And Ln(x’+1) – Ln(x+1) is not percent change of x

q See Cohn, Liu, Wardlaw (JFE 2022) for solutions 
& more details on why using ln(1+y) is problematic

[0, )yÎ ¥



Tangent – Percentage Change

n What is the percent change in 
unemployment if it goes from 10% to 9%?
q This is 10 percent drop
q It is a 1-percentage point drop

n Percentage change is [(x1 – x0)/x0]×100
n Percentage point change is the raw change in 

percentages

 Please take care to get this right in 
description of your empirical results



Models with quadratic terms [Part 1]

n Consider y = β0 + β1x + β2x2 + u
n Partial effect of x is given by…

q What is different about this partial effect 
relative to everything we’ve seen thus far?

n Answer = It depends on the value of x.  So, we will 
need to pick a value of x to evaluate it (e.g.    )

( )1 22y x xb bD = + D

x



Models with quadratic terms [Part 2]

n If                    , then it has parabolic relation

q Turning point = Maximum = 
q Know where this turning point is!  Don’t claim a 

parabolic relation if it lies outside range of x!
q Odd values might imply misspecification or simply 

mean the quadratic terms are irrelevant and should 
be excluded from the regression

1 2
ˆ ˆ0, 0b b> <

1 2
ˆ ˆ/ 2b b



Linear Regression – Outline 

n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation

q Properties & Interpretation
q Partial regression interpretation
q R2, bias, and consistency

n Hypothesis testing
n Miscellaneous issues



Motivation 

n Rather uncommon that we have 
just one independent variable

q So, now we will look at multivariate 
OLS models and their properties…



Basic multivariable model

n Example with constant and k regressors

n Similar identifying assumptions as before

q No collinearity among covariates [why?]
q E(u|x1,…, xk) = 0

n Implies no correlation between any x and u, which 
means we have the correct model of the true causal 
relationship between y and (x1,…, xk)

0 1 1 ... k ky x x ub b b= + + + +



Interpretation of estimates

n Estimated intercept,     , is predicted 
value of y when all x = 0; sometimes this 
makes sense, sometimes it doesn’t

n Estimated slopes,                 , have a 
more subtle interpretation now…

q How would you interpret      ? 

0b̂

( )1̂
ˆ,..., kb b

1̂b

0 1 1
ˆ ˆ ˆ ˆ... k ky x x ub b b= + + + +



Interpretation – Answer 

n Estimated slopes,                 , have partial 
effect interpretations

n Typically, we think about change in just one 
variable, e.g., Δ x1, holding constant all other 
variables, i.e., (Δx2,…, Δxk all equal 0)

q This is given by 
q I.e.,      is the coefficient holding all else fixed 

(ceteris paribus)

1 1
ˆŷ xbD = D

1̂b

( )1̂
ˆ,..., kb b



Interpretation continued…

n However, can also look at how changes 
in multiple variables at once affects 
predicted value of y

q I.e., given changes in x1 through xk             
we obtain the predicted change in y, Δy

1 1
ˆ ˆˆ ... k ky x xb bD = D + + D



Example interpretation – College GPA

n Suppose we regress college GPA onto high 
school GPA (4-point scale) and ACT scores 
for N = 141 university students

q What does the intercept tell us?
q What does the slope on hsGPA tell us?

1.29 0.453 0.0094colGPA hsGPA ACT= + +



Example – Answers 

n Intercept meaningless… person with zero 
high school GPA and ACT doesn’t exist

n Example interpretation of slope…

q Consider two students, Ann and Bob, with 
identical ACT score, but Ann’s GPA is 1 point 
higher than Bob.  Best prediction of Ann’s college 
GPA is that it will be 0.453 higher than Bob’s



Example continued…

n Now, what is effect of increasing high school 
GPA by 1 point and ACT by 1 point?

0.453 0.0094
0.453 0.0094
0.4624

colGPA hsGPA ACT
colGPA
colGPA

D = ´D + ´D
D = +
D =



Example continued…

n Lastly, what is effect of increasing high school 
GPA by 2 points and ACT by 10 points?

0.453 0.0094
0.453 2 0.0094 10
1

colGPA hsGPA ACT
colGPA
colGPA

D = ´D + ´D
D = ´ + ´
D =



Fitted values and residuals

n Definition of residual for observation i, 

n Properties of residual and fitted values
q Sample average of residuals = 0; implies that 

sample average of     equals sample average of y
q Sample covariance between each independent 

variable and residuals = 0
q Point of means                     lies on regression line

ˆ ˆi i iu y y= -

ˆiu

ŷ

1( , ,..., )ky x x



Tangent about residuals

n Again, it bears repeating…
q Looking at whether the residuals are correlated 

with the x’s is NOT a test for causality
q By construction, they are uncorrelated with x
q There is no “test” of whether the CEF is the 

causal CEF; that justification will need to rely 
on economic arguments



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation

q Properties & Interpretation
q Partial regression interpretation
q R2, bias, and consistency

n Hypothesis testing
n Miscellaneous issues

Linear Regression – Outline 



Question to motivate the topic…

n What is wrong with the following? And why?

q Researcher wants to know effect of x on y                
after controlling for z

q So, researcher removes the variation in y that is  
driven by z by regressing y on z  & saves residuals

q Then, researcher regresses these residuals on x and 
claims to have identified effect of x on y controlling 
for z using this regression

We’ll answer why it’s 
wrong in a second…



Partial regression [Part 1]
n The following is quite useful to know…
n Suppose you want to estimate the following

q Is there another way to get     that doesn’t 
involve estimating this directly?
n Answer: Yes!  You can estimate it by regressing the 

residuals from a regression of y on x2 onto the 
residuals from a regression of x1 onto x2

0 1 1 2 2y x x ub b b= + + +

1̂b



Partial regression [Part 2]

n To be clear, you get     , by…

#1 – Regress y on x2; save residuals (call them    )

#2 – Regress x1 on x2; save residuals (call them     )

#3 – Regress     onto     ; the estimated coefficient 
will be the same as if you’d just run the original 
multivariate regression!!!

1̂b

  !y

  !x

  !y   !x



Partial regression – Interpretation 

n Multivariate estimation is basically finding 
effect of each independent variable after 
partialing out effects of other variables

q I.e., Effect of x1 on y after controlling for x2, (i.e., 
what you’d get from regressing y on both x1 and 
x2) is the same as what you get after you partial 
out the effect x2 from both x1 and y and then run 
a regression using the residuals



Partial regression – Generalized 

n This property holds more generally…
q Suppose X1 is vector of independent variables
q X2 is vector of more independent variables
q And, you want to know that coefficients on X1 that 

you would get from a multivariate regression of y 
onto all the variables in X1 and X2…



Partial regression – Generalized, Part 2 

n You can get the coefficients for each 
variable in X1 by…
q Regress y and each variable in X1 onto all the 

variables in X2 (at once), save residuals from 
each regression

q Do a regression of residuals; i.e., regress y 
onto variables of X1, but replace y and X1 
with the residuals from the corresponding 
regression in step #1



Practical application of partial regression

n Now, what is wrong with the following? 

q Researcher wants to know effect of x on y                
after controlling for z

q So, researcher removes the variation in y that is  
driven by z by regressing y on z  & saves residuals

q Then, researcher regresses these residuals on x and 
claims to have identified effect of x on y controlling 
for z using this regression



Practical application – Answer 

n It’s wrong because it didn’t partial the effect 
of z out of x!  Therefore, it is NOT the 
same as regressing y onto both x and z!

n Unfortunately, it was commonly done by 
researchers in finance [e.g., industry-adjusting]

q We will see how badly this can mess up things in 
a later lecture where we look at my paper with 
David Matsa on unobserved heterogeneity



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation

q Properties & Interpretation
q Partial regression interpretation
q R2, bias, and consistency

n Hypothesis testing
n Miscellaneous issues

Linear Regression – Outline 



Goodness-of-Fit (R2)

n A lot is made of R-squared; so, let’s 
quickly review exactly what it is

n Start by defining the following:
q Sum of squares total (SST)
q Sum of squares explained (SSE)
q Sum of squares residual (SSR)



Definition of SST, SSE, SST
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SST is total variation in y

If  N is the number of  observations and the 
regression has a constant, then

SSE is total variation in predicted y 
[mean of  predicted y = mean of  y]

SSR is total variation in residuals
[mean of  residual = 0]



SSR, SST, and SSE continued…

n The total variation, SST, can be broken 
into two pieces… the explained part, 
SSE, and unexplained part, SSR

n R2 is just the share of total variation that 
is explained!  In other words, 

SST = SSE + SSR

R2 = SSE/SST = 1 – SSR/SST



More about R2

n As seen on last slide, R2 must be 
between 0 and 1

n It can also be shown that R2 is equal 
to the square of the correlation 
between y and predicted y

n If you add an independent variable, 
R2 will never go down
 



Adjusted R2

n Because R2 always goes up, we often use 
what is called Adjusted R2

q k = # of regressors, excluding the constant
q Basically, you get penalized for each additional 

regressor, such that adjusted R2 won’t go up after 
you add another variable if it doesn’t improve fit 
much [it can go down!]
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n If I tell you the R2 is 0.014 from a 
regression, what does that mean?  Is it bad?
q Answer #1 = It means I’m only explaining 

about 1.4% of the variation in y with the 
regressors that I’m including in the regression

q Answer #2 = Not necessarily!  It doesn’t mean 
the model is wrong; you might still be getting a 
consistent estimate of the β you care about!

Interpreting R2



Unbiasedness versus Consistency

n When we say an estimate is unbiased          
or consistent, it means we think it has           
a causal interpretation…

q I.e., the CMI assumption holds and the x’s are 
all uncorrelated with the disturbance, u

n Bias refers to finite sample property; 
consistency refers to asymptotic property



More formally…

n An estimate,    , is unbiased if 

q I.e., on average, the estimate is centered around the 
true, unobserved value of β

q Doesn’t say whether you get a more precise 
estimate as sample size increases

n An estimate is consistent if 

q I.e., as sample size increases, the estimate converges 
(in probability limit) to the true coefficient 

ˆ
N
plimb b
®¥

=
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Unbiasedness of OLS

n OLS will be unbiased when…
q Model is linear in parameters
q We have a random sample of x
q No perfect collinearity between x’s
q E(u|x1,…, xk) = 0                                                   

[Earlier CMI assumptions #1 and #2 give us this]

n Unbiasedness is nice feature of OLS; but in 
practice, we care more about consistency



Consistency of OLS

n OLS will be consistent when
q Model is linear in parameters
q u is not correlated with any of the x’s, 
    [CMI assumptions #1 and #2 give us this; a lack of 

correlation is a weaker assumption than CMI… CMI 
precludes both linear and non-linear relationships, while 
correlations only measure linear relationships]

n Again, this is good
n See textbooks for more information



Summary of Today [Part 1]

n The CEF, E(y|x) has desirable properties

q Linear OLS gives best linear approx. of it
q If correlation between error, u, and independent 

variables, x’s, is zero it has causal interpretation

n Scaling & shifting of variables doesn’t affect 
inference, but can be useful

q E.g., demean to give intercepts more meaningful 
interpretation or rescale for cosmetic purposes



Summary of Today [Part 2]

n Multivariate estimates are partial effects

q I.e., effect of x1 holding x2,…, xk constant
q Can get same estimates in two steps by first 

partialing out some variables and regressing 
residuals on residuals in second step



Assign papers for next week…

n Angrist (AER 1990)

q Military service & future earnings

n Angrist and Lavy (QJE 1999)

q Class size & student achievements

n Acemoglu, et al. (AER 2001) 

q Institutions and economic development

These are seminal 
papers in 

economics with 
clever identification 

strategies…        
i.e., what we aspire 
to learn about later 

in the course



In First Half of Next Class

n Finish discussion of the linear regression

q Hypothesis testing
q Irrelevant regressors & multicollinearity
q Binary variables & interactions

n Relevant readings; see syllabus


