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Lecture 2 –  Linear Regression II



n Quick review
n Finish discussion of linear regression

q Hypothesis testing
n Standard errors
n Robustness, etc.

q Miscellaneous issues
n Multicollinearity
n Interactions

n Presentations of "Classics #1"

Today’s Agenda



Background readings

n Angrist and Pischke
q Sections 3.1-3.2, 3.4.1

n Wooldridge
q Sections 4.1 & 4.2

n Greene
q Chapter 3 and Sections 4.1-4.4, 5.7-5.9, 6.1-6.2



Announcements

n Exercise #1 (which is optional) covers 
the material from today and last class



Quick Review [Part 1]

n When does the CEF, E(y|x), we approx. 
with OLS give causal inferences?

n How do we test for whether this is true?



n What is interpretation of coefficients            
in a log-log regression?

n What happens if rescale log variables?

Quick Review [Part 2]



Quick Review [Part 3]

n How should I interpret coefficient on x1 in a 
multivariate regression? And what two steps 
could I use to get this?

q Answer = …
q Can get same estimates in two steps by first 

partialing out some variables and regressing 
residuals on residuals in second step



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing

q Heteroskedastic versus Homoskedastic errors
q Hypothesis tests
q Economic versus statistical significance

n Miscellaneous issues

Linear Regression – Outline 



Hypothesis testing

n Before getting to hypothesis testing, which 
allows us to say something like “our 
estimate is statistically significant,” it is 
helpful to first look at OLS variance

q Understanding it and the assumptions made to 
get it can help us get the right standard errors 
for our later hypothesis tests



Variance of OLS Estimators

n Homoskedasticity implies Var(u|x) = σ2

q I.e., Variance of disturbances, u, does not 
depend on level of observed x

n Heteroskedasticity implies Var(u|x) = f(x)
q I.e., Variance of disturbances, u, does depend 

on level of x in some way



Variance visually…

Homoskedasticity Heteroskedasticity



Which assumption is more realistic?

n In investment regression, which is more realistic, 
homoskedasticity or heteroskedasticity?

q Answer: Heteroskedasticity seems like a much safer 
assumption to make; not hard to produce stories on 
why homoskedasticity is violated

Investment  = α + βQ + u



Heteroskedasticity (HEK) and bias

n Does heteroskedasticity cause bias?
q Answer = No!  E(u|x)=0 (which is what we need 

for unbiased estimates) is something entirely 
different.  Hetereskedasticity just affects SEs! 

q Heteroskedasticity just means that the OLS 
estimate may no longer be the most efficient (i.e., 
precise) linear estimator

n So, why do we care about HEK?



Default is homoskedastic (HOK) SEs

n Default standard errors reported by 
programs like Stata assume HOK

q If standard errors are heteroskedastic, 
statistical inferences made from these 
standard errors might be incorrect…

How do we correct for this?



Robust standard errors (SEs)

n Use “robust” option to get standard 
errors (for hypothesis testing ) that are 
robust to heteroskedasticity

q Typically increases SE, but usually won’t 
make that big of a deal in practice

q If standard errors go down, could have 
problem; use the larger standard errors!

q We will talk about clustering later…



Using WLS to deal with HEK

n Weighted least squares (WLS) is sometimes 
used when worried about heteroskedasticity

q WLS basically weights the observation of x using 
an estimate of the variance at that value of x

q Done correctly, can improve precision of estimates



WLS continued… a recommendation
n Recommendation of Angrist-Pischke      

[See Section 3.4.1]: don’t bother with WLS

q OLS is consistent, so why bother?                     
Can just use robust standard errors

q Finite sample properties can be bad [and it may 
not actually be more efficient]

q Harder to interpret than just using OLS [which 
is still best linear approx. of CEF]



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing

q Heteroskedastic versus Homoskedastic errors
q Hypothesis tests
q Economic versus statistical significance

n Miscellaneous issues

Linear Regression – Outline 



Hypothesis tests
n This type of phrases are common: “The 

estimate,    , is statistically significant”

q What does this mean?
q Answer = “Statistical significance” is 

generally meant to imply an estimate is 
statistically different than zero

But where does this come from?

b̂



Hypothesis tests[Part 2]

n When thinking about significance, it is 
helpful to remember a few things…

q Estimates of β1, β2, etc. are functions of random 
variables; thus, they are random variables with 
variances and covariances with each other

q These variances & covariances can be estimated 
[See textbooks for various derivations]

q Standard error is just the square root of an 
estimate’s estimated variance



Hypothesis tests[Part 3]

n Reported t-stat is just telling us how 
many standard deviations our sample 
estimate,     , is from zero

q I.e., it is testing the null hypothesis: 
q p-value is just the likelihood that we would 

get an estimate     standard deviations away 
from zero by luck if the true 

b̂

b̂
0b =

0b =

!



Hypothesis tests[Part 4]

n See textbooks for more details on how to 
do other hypothesis tests; E.g. 
q     
q    

q Given these are generally easily done in 
programs like Stata, I don’t want to 
spend time going over the math 

1 2b b=
1 2 3 0b b b= = =

!



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing

q Heteroskedastic versus Homoskedastic errors
q Hypothesis tests
q Economic versus statistical significance

n Miscellaneous issues

Linear Regression – Outline 



Statistical vs. Economic Significance

n These are not the same!

q  Coefficient might be statistically 
significant, but economically small

n You can get this in large samples, or when 
you have a lot of variation in x (or outliers) 

q Coefficient might be economically large, 
but statistically insignificant

n Might just be small sample size or too little 
variation in x to get precise estimate



Economic Significance

n You should always check economic 
significance of coefficients

q E.g., how large is the implied change in y 
for a standard deviation change in x? 

q And importantly, is that plausible?  If not, 
you might have a specification problem



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues

q Irrelevant regressors & multicollinearity
q Binary models and interactions
q Reporting regressions

Linear Regression – Outline 



Irrelevant regressors

n What happens if include a regressor that 
should not be in the model? 

q We estimate y = β0 + β1x1 + β2x2 + u
q However, real model is y = β0 + β1x1 + u 

q Answer: We still get a consistent estimate of all 
the β, where β2 = 0, but our standard errors 
might go up (making it harder to find statistically 
significant effects)… see next few slides



Variance and of OLS estimators

n Greater variance in your estimates,     , 
increases your standard errors, making it 
harder to find statistically significant estimates

n So, useful to know what increases 

ˆ
jb

( )ˆ jVar b



n Sampling variance of OLS slope is…

 for j = 1,…, k, where Rj
2 is the R2 from 

regressing xj on all other independent variables 
including the intercept and σ2 is the variance of 
the regression error, u 

Variance formula

( ) ( ) ( )
2

2 2
1

ˆ
1

j N
ij j ji

Var
x x R

sb
=

=
- -å



n How will more variation in x affect SE? Why?
n How will higher σ2 affect SE?  Why?
n How will higher Rj

2 affect SE? Why?

Variance formula – Interpretation 

( ) ( ) ( )
2

2 2
1

ˆ
1

j N
ij j ji

Var
x x R

sb
=

=
- -å



Variance formula – Variation in xj

n More variation in xj is good; smaller SE!
q Intuitive; more variation in xj helps us 

identify its effect on y!
q This is why we always want larger samples; 

it will give us more variation in xj



Variance formula – Effect of σ2

n More error variance means bigger SE
q Intuitive; a lot of the variation in y is 

explained by things you didn’t model
q Can add variables that affect y (even if not 

necessary for identification) to improve fit!
 



Variance formula – Effect of Rj2

n However, more variables can also be 
bad if they are highly collinear 
q Gets harder to disentangle effect of the 

variables that are highly collinear
q This is why we don’t want to add variables 

that are “irrelevant” (i.e., they don’t affect y)

Should we include variables that do explain y and 
are highly correlated with our x of  interest?



n Highly collinear variables can inflate SEs

q But it does not cause a bias or inconsistency! 
q Problem is just one of a having too small of a 

sample; with a larger sample, one could get 
more variation in the independent variables and 
get more precise estimates

 

Multicollinearity [Part 1]



n Consider the following model

 

 where x2 and x3 are highly correlated

q                and               may be large, but 
correlation between x2 and x3 has no 
direct effect on

q If x1 is uncorrelated with x2 and x3, the 
R12 = 0 and               unaffected

 

Multicollinearity [Part 2]

0 1 1 2 2 3 3y x x x ub b b b= + + + +

( )2ˆVar b ( )3ˆVar b

( )1̂Var b

( )1̂Var b



Multicollinearity – Key Takeaways

n It doesn’t cause bias
n Don’t include controls that are highly 

correlated with independent variable of 
interest if they aren’t needed for 
identification [i.e., E(u|x) = 0 without them]

q But obviously, if E(u|x) ≠ 0 without these 
controls, you need them!

q A larger sample will help increase precision



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues

q Irrelevant regressors & multicollinearity
q Binary models and interactions
q Reporting regressions

Linear Regression – Outline 



Models with interactions

n Sometimes, it is helpful for identification, to 
add interactions between x’s

q Ex. – theory suggests firms with a high value of x1 
should be more affected by some change in x2

q E.g., see Rajan and Zingales (1998)

n The model will look something like…

0 1 1 2 2 3 1 2y x x x x ub b b b= + + + +



Interactions – Interpretation [Part 1]

n According to this model, what is the effect of 
increasing x1 on y, holding all else equal? 

q Answer:

0 1 1 2 2 3 1 2y x x x x ub b b b= + + + +

( )1 3 2 1

1 3 2
1

y x x
dy x
dx

b b

b b

D = + D

= +



Interactions – Interpretation [Part 2]

n If β3 < 0, how does a higher x2 affect the 
partial effect of x1 on y?

q Answer:  The increase in y for a given change in 
x1 will be smaller in levels (not necessarily in 
absolute magnitude) for firms with a higher x2

1 3 2
1

dy x
dx

b b= +



Interactions – Interpretation [Part 3]

n Suppose, β1 > 0 and β3 < 0 … what is the 
sign of the effect of an increase in x1 for 
the average firm in the population?

q Answer:  It is the sign of 

1 3 2
1

dy x
dx

b b= +

2 2
1 3 2

1

| x xdy x
dx

b b= = +



A very common mistake! [Part 1]

q Researcher claims that “since β1>0 and β3<0, an 
increase in x1 increases y for the average firm, but 
the increase is less for firms with a high x2”

n Wrong!!!  The average effect of an increase in x1             
might be negative if      is very large!

n β1 only captures partial effect when x2 = 0, which                 
might not even make sense if x2 is never 0!

2 2
1 3 2

1

| x xdy x
dx

b b= = +

2x



A very common mistake! [Part 2]

n To improve interpretation of β1, you can 
reparameterize the model by demeaning 
each variable in the model, and estimate

             where

   

!y = y − µ y

!x1 = x1 − µx1

!x2 = x2 − µx2

   !y = δ0 +δ1 !x1 +δ 2 !x2 +δ3 !x1 !x2 + u



A very common mistake! [Part 3]

n You can then show…

 and thus, 

n Now, the coefficient on the demeaned x1 can 
be interpreted as effect of x1 for avg. firm!

   Δy = δ1 +δ3 !x2( )Δx1

( )2 2

2 2

1 3 2 2
1

1
1

|

|

x

x

dy x
dx
dy
dx

µ

µ

d d µ

d

=

=

= + -

=



The main takeaway – Summary 

n If you want to coefficients on non-
interacted variables to reflect the effect 
of that variable for the “average” firm, 
demean all your variables before 
running the specification 

n Why is there so much confusion about this?  
Probably because of indicator variables…



Indicator (binary) variables

n We will now talk about indicator variables

q Interpretation of the indicator variables
q Interpretation when you interact them
q When demeaning is helpful
q When using an indicator rather than a 

continuous variable might make sense



Motivation

n Indicator variables, also known as binary 
variables, are quite popular these days

q Ex. #1 – Sex of CEO (male, female)
q Ex. #2 – Employment status (employed, unemployed)
q Also see in many diff-in-diff specifications

n Ex. #1 – Size of firm (above vs. below median)
n Ex. #2 – Pay of CEO (above vs. below median)



How they work

n Code the information using dummy variable

q Ex. #1:

q Ex. #2:

n Choice of 0 or 1 is relevant only for interpretation

1   if person  is male
0  otherwisei

i
Male ì

= í
î

1   if Ln(assets) of firm  > median
0  otherwisei

i
Large ì

= í
î



Single dummy variable model

n Consider
n δ0 measures difference in wage between male 

and female given same level of education

q E(wage|female = 0, educ) = β0 + β1educ
q E(wage|female = 1, educ) = β0 + δ0 + β1educ
q Thus, 

n Intercept for males = β0 , females = β0 + δ0 

0 0 1wage female educ ub d b= + + +

E(wage|f  = 1, educ) – E(wage|f  = 0, educ) = δ0  



Single dummy just shifts intercept!
n When δ0 < 0, we have visually…

β1



Single dummy example – Wages 

n Suppose we estimate the following wage model

q Male intercept is -1.57; it is meaningless, why?
q How should we interpret the 1.8 coefficient?

n Answer: Females earn $1.80/hour less then men                 
with same education, experience, and tenure

Wage = -1.57 – 1.8female + 0.57educ + 0.03exp + 0.14tenure



Log dependent variable & indicators

n Nothing new; coefficient on indicator has % 
interpretation.  Consider following example…

q Again, negative intercept meaningless; all other 
variables are never all equal to zero

q Interpretation = colonial style home costs about 
5.4% more than “otherwise similar” homes

ln( ) 1.35 0.17ln( ) 0.71ln( )
0.03 0.054

price lotsize sqrft
bdrms colonial

= - + +
+ +



Multiple indicator variables

n Suppose you want to know how much lower 
wages are for married and single females
q Now have 4 possible outcomes

n Single & male
n Married & male
n Single & female
n Married & female 

q To estimate, create indicators for three of the 
variables and add them to the regression



But, which to exclude?

n We must exclude one of the four because 
they are perfectly collinear with the 
intercept, but does it matter which?

q Answer: No, not really.  It just effects the 
interpretation.  Estimates of included 
indicators will be relative to excluded indicator

q For example, if we exclude “single & male,” 
we are estimating partial change in wage 
relative to that of single males



But, which to exclude? [Part 2]

n Note: if you don’t exclude one, then 
statistical programs like Stata will just 
drop one for you automatically.  For 
interpretation, you need to figure out 
which one was dropped!



Multiple indicators – Example 

n Consider the following estimation results…

q I omitted single male; thus, intercept is for single males
q And can interpret other coefficients as…

n Married men earn ≈ 21% more than single males, all else equal
n Married women earn ≈ 20% less than single males, all else equal

ln( ) 0.3 0.2l .20
0.11 0.08

wage marriedMale marriedFemale
singleFemale education

= + -
- +



Interactions with Indicators

n We could also do prior regression instead 
using interactions between indicators

q I.e., construct just two indicators, ‘female’ and 
‘married’ and estimate the following

q How will our estimates and interpretation 
differ from earlier estimates?

( )
0 1 2

3 4

ln( )wage female married
female married education

b b b

b b

= + +

+ ´ +



n Before we had, 

n Now, we will have,

q Question: Before, married females had wages 
that were 0.20 lower; how much lower are                  
wages of married females now?

Interactions with Indicators [Part 2]

( )
ln( ) 0.3 0.11 0.21

0.30 0.08
wage female married

female married education
= - +

- ´ +

ln( ) 0.3 0.2l .20
0.11 0.08

wage marriedMale marriedFemale
singleFemale education

= + -
- +



Interactions with Indicators [Part 3]

n Answer: It will be the same!

q Difference for married female =  –0.11+0.21– 
0.30 = -0.20; the same as before

n Bottom line = you can do the indicators 
either way; inference is unaffected

  

ln(wage) = 0.3− 0.11 female+ 0.21married
−0.30 female× married( ) + ...



Indicator Interactions – Example 

n Krueger (1993) found…

q Excluded category = people with no computer
q How do we interpret these estimates?

n How much higher are wages if have computer at work? 
n If have computer at home?
n If have computers at both work and home?

( )
0
ˆln( ) 0.18 0.07
0.02 ...

wage compwork comphome
compwork comphome

b= + +

+ ´ +

≈18%
≈7%

≈18+7+2=27%



Indicator Interactions – Example [part 2] 

n Remember, these are just approximate percent 
changes… To get true change, need to convert

q E.g., % change in wages for having computers at 
both home and work is given by
100*[exp(0.18+0.07+0.02) – 1] = 31%



Interacting Indicators w/ Continuous

n Adding dummies alone will only shift 
intercepts for different groups

n However, if we interact these dummies 
with continuous variables, we can get 
different slopes for different groups as well

q See next slide for an example of this



Continuous Interactions – Example  

n Consider the following

q What is intercept for males?
q What is slope for males?
q What is intercept for females?
q What is slope for females?

( )0 0 1 1ln( )wage female educ female educ ub d b d= + + + ´ +

β0
β1

β0+δ0
β1+δ1



Visual #1 of Example  

In this example…

q Females earn lower wages 
at all levels of education

q Avg. increase per unit of 
education is also lower

( )0 0 1 1ln( )wage female educ female educ ub d b d= + + + ´ +



Visual #2 of Example  

In this example…

q Wage is lower for females 
but only for lower levels 
of education because their 
slope is larger

( )0 0 1 1ln( )wage female educ female educ ub d b d= + + + ´ +

Is it fair to conclude that 
women eventually earn 
higher wages with 
enough education?



Cautionary Note on Different Slopes!

n Crossing point (where women earn higher 
wages) might occur outside the data              
(i.e., at education levels that don’t exist)

q Need to solve for crossing point before 
making this claim about the data

q They equal when educ = δ0/δ1

( )0 0 1 1

0 1

: ln( )
: ln( )

Women wage educ u
Men wage educ u

b d b d
b b
= + + + +

= + +



Cautionary Note on Interpretation!

n Interpretation of non-interacted terms when 
using continuous variables is tricky

n E.g., consider the following estimates

q Return to educ is 8% for men, 7% for women
q But, at the average education level, how much less 

do women earn?

( )ln( ) 0.39 0.23 0.08 .01wage female educ female educ= - + - ´

[–0.23 – 0.01×avg. educ]%



Cautionary Note [Part 2]

n Again, interpretation of non-interacted 
variables does not equal average effect unless 
you demean the continuous variables

q In prior example estimate the following:

q Now, δ0 tells us how much lower the wage is of 
women at the average education level

( )
( )

0 0 1

1

ln( ) educ

educ

wage female educ

female educ

b d b µ

d µ

= + + -

+ ´ -



Cautionary Note [Part 3]

n Recall! As we discussed in prior lecture, the 
slopes won’t change because of the shift

q Only the intercepts, β0 and β0 + δ0 , and their 
standard errors will change

n Bottom line = if you want to interpret non-
interacted indicators as the effect of indicators 
at the average of the continuous variables, you 
need to demean all continuous variables



Ordinal Variables

n Consider credit ratings:
n If want to explain interest rate, IR, with 

ratings, we could convert CR to numeric scale, 
e.g., AAA = 1, AA = 2, … and estimate 

q However, what are we implicitly assuming, and 
how might it be a problematic assumption?

( , ,..., , )CR AAA AA C DÎ

0 1i i iIR CR ub b= + +



Ordinal Variables continued…

n Answer: We assumed a constant linear 
relation between interest rates and CR

q I.e., Moving from AAA to AA produces same 
change as moving from BBB to BB

q Could take log interest rate, but is a constant 
proportional much better? Not really…

n A better route might be to convert the 
ordinal variable to indicator variables



Convert ordinal to indicator variables

n E.g., let CRAAA = 1 if CR = AAA, 0 otherwise; 
CRAA = 1 if CR = AA, 0 otherwise, etc.

n Then, run this regression

q Remember to exclude one (e.g., "D")

n This allows IR change from each rating  
category [relative to the excluded indicator]             
to be of different magnitude!

0 1 2 1...i AAA AA m C iIR CR CR CR ub b b b -= + + + + +



n The CEF and causality (very brief)
n Linear OLS model
n Multivariate estimation
n Hypothesis testing
n Miscellaneous issues

q Irrelevant regressors & multicollinearity
q Binary models and interactions
q Reporting regressions

Linear Regression – Outline 



Reporting regressions

n Table of OLS outputs should 
generally show the following…

q Dependent variable [clearly labeled]
q Independent variables 
q Est. coefficients, their corresponding 

standard errors (or t-stat), and stars 
indicating level of stat. significance

q R2

q # of observations in each regression



Reporting regressions [Part 2]

n In body of paper…

q Focus only on variable(s) of interest

n Tell us their sign, magnitude, statistical & 
economic significance, interpretation, etc.

q Don’t waste time on other coefficients 
unless they are “strange” (e.g., wrong 
sign, huge magnitude, etc.)



Reporting regressions [Part 3]

n And last, but not least, don’t report 
regressions in tables that you aren’t going to 
discuss and/or mention in the paper’s body

q If it’s not important enough to mention in the 
paper, it’s not important enough to be in a table



Summary of Today [Part 1]

n Irrelevant regressors and multi-        
collinearity do not cause bias

q However, they can inflate standard errors
q So, avoid adding unnecessary controls

n Heteroskedastic variance does not cause bias

q Just means the default standard errors for 
hypothesis testing are incorrect

q Use ‘robust’ standard errors (if larger)



Summary of Today [Part 2]

n Interactions and binary variables               
can help us get a causal CEF

q However, if you want to interpret non-interacted 
indicators it is helpful to demean continuous var.

n When writing up regression results

q Make sure you put key items in your tables
q Make sure to talk about both economic and 

statistical significance of estimates



In First Half of Next Class

n Discuss causality and potential biases

q Omitted variable bias
q Measurement error bias
q Simultaneity bias

n Relevant readings – see syllabus



Assign papers for next week…

n Fazzari, et al (BPEA 1988)

q Finance constraints & investment

n Morck, et al (BPEA 1990)

q Stock market & investment

n Opler, et al (JFE 1999) 

q Corporate cash holdings

These classic papers 
in finance that use 

rather simple 
estimations and 

‘identification’ was 
not a foremost 

concern

Do your best to think 
about their potential 

weaknesses…



Break Time

n Let’s take our 10-minute break
n We’ll do presentations when we get back


