FIN 620

Emp. Methods in Finance
Lecture 3 - Causality

Professor Todd Gormley

Background readings for today

- Roberts-Whited
- Section 2
- Angrist and Pischke
- Section 3.2
- Wooldridge
- Sections 4.3 \& 4.4
- Greene
- Sections 5.8-5.9

Outline for Today

- Quick review
- Motivate why we care about causality
- Describe three possible biases \& some potential solutions
- Omitted variable bias
- Measurement error bias
- Simultaneity bias
- Student presentations of "Classics \#2"

Quick Review [Part 1]

- Why is adding irrelevant regressors a potential problem?
- Why is a larger sample helpful?

Quick Review [Part 2]

- Suppose, $\beta_{1}<0$ and $\beta_{3}>0 \ldots$ what is the sign of the effect of an increase in x_{1} for the average firm in the below estimation?

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+u
$$

\square Answer: It is the sign of

$$
\left.\frac{d y}{d x_{1}}\right|^{12=-\bar{x}_{2}}=\beta_{1}+\beta_{3} \bar{x}_{2}
$$

Quick Review [Part 3]

- How could we make the coefficients easier to interpret in the prior example?
- Shift all the variables by subtracting out their sample mean before doing the estimation
- It will allow the non-interacted coefficients to be interpreted as effect for average firm

Quick Review [Part 4]

- Consider the following estimate:

$$
\begin{aligned}
\ln (\text { wage })= & 0.32-0.11 \text { female }+0.21 \text { married } \\
& -0.30(\text { female } \times \text { married })+0.08 \text { education }
\end{aligned}
$$

- Question: How much lower are wages of married and unmarried females after controlling for education, and who is this relative to?

Outline for Today

- Quick review
- Motivate why we care about causality
- Describe three possible biases \& some potential solutions
- Omitted variable bias
- Measurement error bias
- Simultaneity bias
- Student presentations of "Classics \#2"

Motivation

- As researchers, we are interested in making causal statements
- Ex. \#1 - what is the effect of a change in corporate taxes on firms' leverage choice?
- Ex. \#2 - what is the effect of giving a CEO more stock ownership in the firm on the CEO's desire to take on risky investments?
- I.e., we don't like to just say variables are 'associated' or 'correlated' with each other

What do we mean by causality?

- Recall from earlier lecture, that if our linear model is the following...

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u
$$

And we want to infer β_{1} as the causal effect of x_{1} on y, holding all else equal, then we need to make the following assumptions...

The basic assumptions

- Assumption \#1: $\mathrm{E}(u)=0$
- Assumption \#2: $E\left(u \mid x_{1}, \ldots, x_{k}\right)=E(u)$
- In words, average of u (i.e., unexplained portion of y) does not depend on value of x
\square This is "conditional mean independence" (CMI)
- Generally speaking, you need the estimation error to be uncorrelated with all the χ 's

Tangent - CMI versus correlation

- CMI (which implies x and u are uncorrelated) is needed for unbiasedness [which is again a finite sample property]
- However, we only need to assume a zero correlation between x and u for consistency [which is a large sample property]
- This is why I will typically just refer to whether u and x are correlated in my test of whether we can make causal inferences

Three main ways this will be violated

- Omitted variable bias
- Measurement error bias
- Simultaneity bias

Now, let's go through each in turn...

Omitted variable bias (OVB)

- Probably the most common concern you will hear researchers worry about
- Basic idea $=$ the estimation error, u, contains another variable, e.g., z, that affects y and is correlated with an x
\square Please note! The omitted variable is only problematic if correlated with an x

OVB more formally, with one variable

- You estimate: $y=\beta_{0}+\beta_{1} x+u$
- But true model is: $y=\beta_{0}+\beta_{1} x+\beta_{2} z+v$
- Then, $\hat{\beta}_{1}=\beta_{1}+\delta_{x z} \beta_{2}$, where $\delta_{x z}$ is the coefficient you'd get from regressing the omitted variable, z, on x; and

$$
\delta_{x z}=\frac{\operatorname{cov}(x, z)}{\operatorname{var}(x)}
$$

Interpreting the OVB formula

Effect of x on y

> Regression

Effect of

$$
\text { of } z \text { on } x
$$

- Easy to see, estimated coefficient is only unbiased if $\operatorname{cov}(x, z)=0$ [i.e., x and z are uncorrelated] or z has no effect on y [i.e., $\beta_{2}=0$]

Direction and magnitude of the bias

$$
\hat{\beta}_{1}=\beta_{1}+\frac{\operatorname{cov}(x, z)}{\operatorname{var}(x)} \beta_{2}
$$

- Direction of bias given by signs of $\beta_{2}, \operatorname{cov}(x, z)$
- E.g., If know $₹$ has positive effect on y [i.e., $\beta_{2}>0$] and x and $₹$ are positively correlated $[\operatorname{cov}(x, z)>0]$, then the bias will be positive
- Magnitude of the bias will be given by magnitudes of $\beta_{2}, \operatorname{cov}(x, z) / \operatorname{var}(x)$

Example - One variable case

- Suppose we estimate: $\ln ($ wage $)=\beta_{0}+\beta_{1} e d u c+w$
- But true model is:

$$
\ln (\text { wage })=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { ability }+u
$$

- What is likely bias on $\hat{\beta}_{1}$? Recall,

$$
\hat{\beta}_{1}=\beta_{1}+\frac{\operatorname{cov}(e d u c, a b i l i t y)}{\operatorname{var}(e d u c)} \beta_{2}
$$

Example - Answer

- Ability \& wages likely positively correlated, so $\beta_{2}>0$
- Ability \& education likely positive correlated, so $\operatorname{cov}(e d u c$, ability $)>0$
- Thus, the bias is likely to positive! $\hat{\beta}_{1}$ is too big!

OVB - General Form

- Once move away from simple case of just one omitted variable, determining sign (and magnitude) of bias will be a lot harder
- Let $\boldsymbol{\beta}$ be vector of coefficients on k included variables

Let γ be vector of coefficient on l excluded variables

- Let \mathbf{X} be matrix of observations of included variables
- Let \mathbf{Z} be matrix of observations of excluded variables

$$
\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\frac{E\left[\mathbf{X}^{\prime} \mathbf{Z}\right]}{E\left[\mathbf{X}^{\prime} \mathbf{X}\right]} \boldsymbol{\gamma}
$$

OVB - General Form, Intuition

$$
\hat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\frac{E\left[\mathbf{X}^{\prime} \mathbf{Z}\right]}{E\left[\mathbf{X}^{\prime} \mathbf{X}\right]} \gamma_{\boldsymbol{\gamma}}
$$

Vector of regression coefficients

Vector of partial effects of excluded variables

- Same idea as before, but more complicated
- Frankly, this can be a real mess!
[See Gormley and Matsa (2014) for example with
just two included and two excluded variables]

Eliminating Omitted Variable Bias

- How we try to get rid of this bias will depend on the type of omitted variable
\square Observable omitted variable
- Unobservable omitted variable

How can we deal with an observable omitted variable?

Observable omitted variables

- This is easy! Just add them as controls
- E.g., if the omitted variable, z, in my simple case was 'leverage,' then add leverage to regression
- A functional form misspecification is a special case of an observable omitted variable

Let's now talk about this...

Functional form misspecification

- Assume true model is...

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{2}^{2}+u
$$

- However, we omit squared term, x_{2}^{2}
- Just like any OVB, bias on ($\beta_{0}, \beta_{1}, \beta_{2}$) will depend on β_{3} and correlations among (x_{1}, x_{2}, x_{2}^{2})
- You get same type of problem if have incorrect functional form for y [e.g., it should be $\ln (y)$ not y]
- In some sense, this is minor problem... Why?

Tests for correction functional form

- You could add additional squared and cubed terms and look to see whether they make a difference and/or have non-zero coefficients
- This isn't as easy when the possible models are not nested...

Non-nested functional form issues...

- Two non-nested examples are:

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \\
\text { versus } \\
y=\beta_{0}+\beta_{1} \ln \left(x_{1}\right)+\beta_{2} \ln \left(x_{2}\right)+u \\
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \\
\text { versus } \\
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} z+u
\end{gathered}
$$

Let's use this
\longleftarrow example and see how we can try to figure out which is right

Davidson-MacKinnon Test [Part 1]

- To test which is correct, you can try this...
- Take fitted values, \hat{y}, from $1^{\text {st }}$ model and add them as a control in $2^{\text {nd }}$ model

$$
y=\beta_{0}+\beta_{1} \ln \left(x_{1}\right)+\beta_{2} \ln \left(x_{2}\right)+\theta_{1} \hat{y}+u
$$

- Look at t-stat on θ_{1}; if significant rejects $2^{\text {nd }}$ model!
\square Then, do reverse, and look at t-stat on θ_{1} in

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\theta_{1} \hat{y}+u
$$

where $\hat{\hat{y}}$ is predicted value from $2^{\text {nd }}$ model... if significant then $1^{\text {st }}$ model is also rejected

Davidson-MacKinnon Test [Part 2]

- Number of weaknesses to this test...
- A clear winner may not emerge
- Both might be rejected
- Both might be accepted [If this happens, you can use the R^{2} to choose which model is a better fit]
- And rejecting one model does NOT imply that the other model is correct $;$

Bottom line advice on functional form

- Practically speaking, you hope that changes in functional form won't affect coefficients on key variables very much...
- But, if it does... You need to think hard about why this is and what the correct form should be
- The prior test might help with that...

Eliminating Omitted Variable Bias

- How we try to get rid of this bias will depend on the type of omitted variable
\square Observable omitted variable
\square Unobservable omitted variable

$$
\dagger
$$

Unobservable are much harder to deal with, but one possibility is to find a proxy variable

Unobserved omitted variables

- Again, consider earlier estimation

$$
\ln (\text { wage })=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { ability }+u
$$

- Problem: we don't observe \& can't measure ability
\square What can we do? Ans. = Find a proxy variable that is correlated with the unobserved variable, E.g., IQ

Proxy variables [Part 1]

- Consider the following model...

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}^{*}+u
$$

where x_{3}^{*} is unobserved, but we have proxy x_{3}

- Then, suppose $x_{3}^{*}=\delta_{0}+\delta_{1} x_{3}+v$
- v is error associated with proxy's imperfect representation of unobservable x_{3}
- Intercept just accounts for different scales [e.g., ability has different average value than IQ]

Proxy variables [Part 2]

- If we are only interested in β_{1} or β_{2}, we can just replace x_{3}^{*} with x_{3} and estimate

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u
$$

- But, for this to give us consistent estimates of β_{1} and β_{2}, we need to make some assumptions
\#1 - We've got the right model, and
\#2 - Other variables don't explain our unobserved variable after we've accounted for our proxy

Proxy variables - Assumptions

\#1 - $E\left(u \mid x_{1}, x_{2}, x_{3}^{*}\right)=0$; i.e., we have the right model and x_{3} would be irrelevant if we could control for x_{1}, x_{2}, x_{3}^{*}, such that $E\left(u \mid x_{3}\right)=0$

- This is a common assumption; not controversial
$\# 2-E\left(v \mid x_{1}, x_{2}, x_{3}\right)=0$; i.e., x_{3} is a good proxy for x_{3}^{*} such that after controlling for x_{3}, x_{3}^{*} does not depend on x_{1} or x_{2}
- I.e., $E\left(x_{3}^{*} \mid x_{1}, x_{2}, x_{3}\right)=E\left(x_{3}^{*} \mid x_{3}\right)$

Why the proxy works...

- Recall true model: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}^{*}+u$
- Now plug-in for x_{3}^{*}, using $x_{3}^{*}=\delta_{0}+\delta_{1} x_{3}+v$

$$
y=\underbrace{\left(\beta_{0}+\beta_{3} \delta_{0}\right)}_{\alpha_{0}}+\beta_{1} x_{1}+\beta_{2} x_{2}+\underbrace{\left(\beta_{3} \delta_{1}\right)}_{\alpha_{1}} x_{3}+\underbrace{\left(u+\beta_{3} v\right)}_{e}
$$

- Prior assumptions ensure that $E\left(e \mid x_{1}, x_{2}, x_{3}\right)=0$ such that the estimates of $\left(\alpha_{0}, \beta_{1}, \beta_{2}, \alpha_{1}\right)$ are consistent
- Note: β_{0} and β_{3} are not identified

Proxy assumptions are key [Part 1]

- Suppose assumption \#2 is wrong such that

$$
x_{3}^{*}=\delta_{0}+\delta_{1} x_{3}+\underbrace{\gamma_{1} x_{1}+\gamma_{2} x_{2}+w}_{v}
$$

where $E\left(w \mid x_{1}, x_{2}, x_{3}\right)=0$

- If above is true, $E\left(v \mid x_{1}, x_{2}, x_{3}\right) \neq 0$, and if you substitute into model of y, you'd get...

Proxy assumptions are key [Part 2]

- Plugging in for x_{3}^{*}, you'd get

$$
y=\alpha_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+e
$$

where $\alpha_{0}=\beta_{0}+\beta_{3} \delta_{0}$

$$
\begin{aligned}
& \alpha_{1}=\beta_{1}+\beta_{3} \gamma_{1} \\
& \alpha_{2}=\beta_{2}+\beta_{3} \gamma_{2} \\
& \alpha_{3}=\beta_{3} \delta_{1}
\end{aligned}
$$

E.g., α_{1} captures effect of x_{1} on y, β_{1}, but also its correlation with unobserved variable

- We'd get consistent estimates of ($\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$) But that isn't what we want!

Proxy variables - Example \#1

- Consider earlier wage estimation

$$
\ln (\text { wage })=\beta_{0}+\beta_{1} e d u c+\beta_{2} \text { ability }+u
$$

- If we use IQ as proxy for unobserved ability, what assumption must we make? Is it plausible?
- Answer: We assume $E($ ability $\mid e d u c, I Q)=E($ ability $\mid I Q)$, i.e., average ability does not change with education after accounting for IQ... Could be questionable assumption!

Proxy variables - Example \#2

- Consider Q-theory of investment

$$
\text { investment }=\beta_{0}+\beta_{1} Q+u
$$

- Can we estimate β_{1} using a firm's market-to-book ratio (MTB) as proxy for Q ? Why or why not?
- Answer: Even if we believe this is the correct model (Assumption \#1) or that Q only depends on MTB (Assumption \#2), e.g., $\mathrm{Q}=\delta_{0}+\delta_{1} \mathrm{MTB}$, we are still not getting estimate of $\beta_{1} \ldots$ see next slide for the math

Proxy variables - Example \#2 [Part 2]

- Even if assumptions held, we'd only be getting consistent estimates of

$$
\text { investment }=\alpha_{0}+\alpha_{1} M T B+e
$$

where $\alpha_{0}=\beta_{0}+\beta_{1} \delta_{0}$

$$
\alpha_{1}=\beta_{1} \delta_{1}
$$

- While we can't get β_{1}, is there something we can get if we make assumptions about sign of δ_{1} ?
- Answer: Yes, the sign of β_{1}

Proxy variables - Summary

- If the coefficient on the unobserved variable isn't what we are interested in, then a proxy for it can be used to identify and remove OVB from the other parameters
- Proxy can also be used to determine sign of coefficient on an unobserved variable

Random Coefficient Model

- So far, we've assumed that the effect of x on y (i.e., β) was the same for all observations
- In reality, this is unlikely true; model might look more like $y_{i}=\alpha_{i}+\beta_{i} x_{i}+u_{i}$, where

$$
\begin{array}{ll}
\alpha_{i}=\alpha+c_{i} \\
\beta_{i}=\beta+d_{i} \\
E\left(c_{i}\right)=E\left(d_{i}\right)=0 & \begin{array}{l}
\text { I.e., each observation's } \\
\text { relationship between } x \\
\text { and } y \text { is slightly different }
\end{array}
\end{array}
$$

$\square \alpha$ is the average intercept and β is what we call the "average partial effect" (APE)

Random Coefficient Model [Part 2]

- Regression would seem to be incorrectly specified, but if willing to make assumptions, we can identify the APE
\square Plug in for α_{i} and β_{i}

$$
y_{i}=a+\beta x_{i}+\left(c_{i}+d_{i} x_{i}+u_{i}\right)
$$

differential intercept and slopes as omitted variable

$$
E\left(c_{i}+d_{i} x_{i}+u_{i} \mid x\right)=0
$$

What does this imply?

Random Coefficient Model [Part 3]

- This amounts to requiring

$$
\begin{aligned}
& E\left(c_{i} \mid x\right)=E\left(c_{i}\right)=0 \Rightarrow E\left(\alpha_{i} \mid x\right)=E\left(\alpha_{i}\right) \\
& E\left(d_{i} \mid x\right)=E\left(d_{i}\right)=0 \Rightarrow E\left(\beta_{i} \mid x\right)=E\left(\beta_{i}\right)
\end{aligned}
$$

\square We must assume that the individual slopes and intercepts are mean independent (i.e., uncorrelated with the value of x) in order to estimate the APE

- I.e., knowing x, does not help us predict the individual's partial effect

Random Coefficient Model [Part 4]

- Implications of APE
\square Be careful interpreting coefficients when you are implicitly arguing elsewhere in paper that effect of x varies across observations
- Keep in mind the assumption this requires
- And describe results using something like... "we find that, on average, an increase in x causes a β change in $y^{\prime \prime}$

Three main ways this will be violated

- Omitted variable bias
- Measurement error bias
- Simultaneity bias

Measurement error (ME) bias

- Estimation will have measurement error whenever we measure the variable of interest imprecisely
- Ex. \#1: Altman-z-score is noisy measure of default risk
- Ex. \#2: Avg. tax rate is noisy measure of marg. tax rate
- Such measurement error can cause bias, and the bias can be quite complicated

Measurement error vs. proxies

- Measurement error is like a proxy variable, but very different conceptually
- Proxy is used for something that is entirely unobservable or unmeasureable (e.g., ability)
- With measurement error, the variable we don't observe is well-defined and can be quantified... it's just that our measure of it contains error

ME of Dep. Variable [Part 1]

- Usually not a problem (in terms of bias); just causes our standard errors to be larger. E.g.,...
\square Let $y^{*}=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u$
- But we measure y^{*} with error $e=y-y^{*}$
- Because we only observe y, we estimate

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+(u+e)
$$

Note: we always assume $E(e)=0$; this is innocuous because if untrue, it only affects the bias on the constant

ME of Dep. Variable [Part 2]

- As long as $\mathrm{E}(e \mid x)=0$, the OLS estimates are consistent and unbiased
- I.e., as long as the measurement error of y is uncorrelated with the χ 's, we're okay
\square Only issue is that we get larger standard errors when e and u are uncorrelated [which is what we typically assume] because $\operatorname{Var}(u+e)>\operatorname{Var}(u)$

What are some common examples of ME?

ME of Dep. Variable [Part 3]

- Some common examples
- Market leverage - typically use book value of debt because market value hard to observe
- Firm value - again, hard to observe market value of debt, so we use book value
- CEO compensation - value of options are approximated using Black-Scholes

Is assuming e and x are uncorrelated plausible?

ME of Dep. Variable [Part 4]

- Answer $=$ Maybe.. maybe not
- Ex. - Firm leverage is measured with error; hard to observe market value of debt, so we use book value
- But the measurement error is likely to be larger when firms are in distress... Market value of debt falls; book value does not
- This error could be correlated with x 's if it includes things like profitability (i.e., ME larger for low profit firms)
- This type of ME will cause inconsistent estimates

ME of Independent Variable [Part 1]

- Let's assume the model is $y=\beta_{0}+\beta_{1} x^{*}+u$
- But we observe x^{*} with error, $e=x-x^{*}$
- We assume that $\mathrm{E}\left(y \mid x^{*}, x\right)=\mathrm{E}\left(y \mid x^{*}\right)$ [i.e., x doesn't affect y after controlling for x^{*}; this is standard and uncontroversial because it is just stating that we have written the correct model]
- What are some examples in CF?

ME of Independent Variable [Part 2]

- There are lots of examples!
- Average Q measures marginal Q with error
- Altman-₹ score measures default prob. with error

Will this measurement error cause bias?

ME of Independent Variable [Part 2]

- Answer depends crucially on what we assume about the measurement error, e
- Literature focuses on two extreme assumptions
\#1 - Measurement error, e, is uncorrelated with the observed measure, x
\#2 - Measurement error, e, is uncorrelated with the unobserved measure, x^{*}

Assumption \#1: e uncorrelated with x

- Substituting x^{*} with what we actually observe, $x^{*}=x-e$, into true model, we have

$$
y=\beta_{0}+\beta_{1} x+u-\beta_{1} e
$$

- Is there a bias?
- Answer $=$ No. x is uncorrelated with e by assumption, and x is uncorrelated with u by earlier assumptions
- What happens to our standard errors?
- Answer $=$ They get larger; error variance is now $\sigma_{u}^{2}+\beta_{1}^{2} \sigma_{e}^{2}$

Assumption \#2: e uncorrelated with x^{*}

- We are still estimating $y=\beta_{0}+\beta_{1} x+u-\beta_{1} e$, but now, x is correlated with e
- e uncorrelated with x^{*} guarantees e is correlated with $x ; \operatorname{cov}(x, e)=E(x e)=E\left(x^{*} e\right)+E\left(e^{2}\right)=\sigma_{e}^{2}$
- I.e., an independent variable will be correlated with the error... we will get biased estimates!
- This is what people call the Classical Error-in-Variables (CEV) assumption

CEV with 1 variable $=$ attenuation bias

- If you work out math, you can show that the estimate of $\beta_{1}, \hat{\beta}_{1}$, in prior example (which had just one independent variable) is...

$$
p \lim \left(\hat{\beta}_{1}\right)=\beta_{1}\left(\frac{\sigma_{x^{*}}^{2}}{\sigma_{x^{*}}^{2}+\sigma_{e}^{2}}\right) \longleftarrow \begin{gathered}
\text { This scaling } \\
\text { factors is always } \\
\text { between } 0 \text { and } 1
\end{gathered}
$$

- The estimate is always biased towards zero; i.e., it is an attenuation bias
- And, if variance of error, σ_{e}^{2}, is small, then attenuation bias won't be that bad

Measurement error... not so bad?

- Under current setup, measurement error doesn't seem so bad...
- If error uncorrelated with observed x, no bias
- If error uncorrelated with unobserved x^{*}, we get an attenuation bias... so at least the sign on our coefficient of interest is still correct
- Why is this misleading?

Nope, measurement error is bad news

- Truth is, measurement error is probably correlated a bit with both the observed x and unobserved x^{*}
- I.e... some attenuation bias is likely
- Moreover, even in CEV case, if there is more than one independent variable, the bias gets horribly complicated...

ME with more than one variable

- If estimating $y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u$, and just one of the χ^{\prime} s is mismeasured, then...
- ALL the β^{\prime} 's will be biased if the mismeasured variable is correlated with any other x [which presumably is true since it was included!]
- Sign and magnitude of biases will depend on all the correlations between χ 's; i.e., big mess!
- See Gormley and Matsa (2014) math for $A v g \mathrm{E}$ estimator to see how bad this can be

ME example

- Fazzari, Hubbard, and Petersen (1988) is classic example of a paper with ME problem
\square Regresses investment on Tobin's Q (it's measure of investment opportunities) and cash
- Finds positive coefficient on cash; argues there must be financial constraints present
- But Q is noisy measure; all coefficients are biased!
- Erickson and Whited (2000) argues the pos. coeff. disappears if you correct the ME

Three main ways this will be violated

- Omitted variable bias
- Measurement error bias
- Simultaneity bias

Simultaneity bias

- This will occur whenever any of the supposedly independent variables (i.e., the x^{\prime} s) can be affected by changes in the y variable; E.g.

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x+u \\
& x=\delta_{0}+\delta_{1} y+v
\end{aligned}
$$

- I.e., changes in x affect y, and changes in y affect x; this is the simplest case of reverse causality
- An estimate of $y=\beta_{0}+\beta_{1} x+u$ will be biased...

Simultaneity bias continued...

- To see why estimating $y=\beta_{0}+\beta_{1} x+u$ won't reveal the true β_{1}, solve for χ

$$
\begin{aligned}
& x=\delta_{0}+\delta_{1} y+v \\
& x=\delta_{0}+\delta_{1}\left(\beta_{0}+\beta_{1} x+u\right)+v \\
& x=\left(\frac{\delta_{0}+\delta_{1} \beta_{0}}{1-\delta_{1} \beta_{1}}\right)+\left(\frac{v}{1-\delta_{1} \beta_{1}}\right)+\left(\frac{\delta_{1}}{1-\delta_{1} \beta_{1}}\right) u
\end{aligned}
$$

\square Easy to see that x is correlated with u ! I.e., bias!

Simultaneity bias in other regressors

- Prior example is case of reverse causality; the variable of interest is also affected by y
- But, if y affects any x, their will be a bias; E.g.,

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \\
& x_{2}=\gamma_{0}+\gamma_{1} y+w
\end{aligned}
$$

- Easy to show that x_{2} is correlated with u; and there will be a bias on all coefficients
- This is why people use lagged x 's

"Endogeneity" problem - Tangent

- In my opinion, the prior example is what it means to have an "endogeneity" problem or and "endogenous" variable
- But, as I mentioned earlier, there is a lot of misusage of the word "endogeneity" in finance... So, it might be better just saying "simultaneity bias"

Simultaneity Bias - Summary

- If your x might also be affected by the y
(i.e., reverse causality), you won't be able to make causal inferences using OLS
- Instrumental variables or natural experiments will be helpful with this problem
- Also, you can't get causal estimates with OLS if controls are affected by the y

"Bad controls"

- Like simultaneity bias... this is when one x is affected by another x; e.g.

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \\
& x_{2}=\gamma_{0}+\gamma_{1} x_{1}+v
\end{aligned}
$$

- Angrist-Pischke call this a "bad control," and it can introduce a subtle selection bias when working with natural experiments [we will come back to this in later lecture]

"Bad Controls" - TG's Pet Peeve

- But just to preview it... If you have an x that is truly exogenous (i.e., random) [as you might have in natural experiment], do not put in controls, that are also affected by x !
- Only add controls unaffected by x, or just regress your various y 's on x, and x alone!

We will revisit this in later lecture...

Summary of Today [Part 1]

- We need conditional mean independence (CMI), to make causal statements
- CMI is violated whenever an independent variable, x, is correlated with the error, u
- Three main ways this can be violated
- Omitted variable bias
- Measurement error bias
- Simultaneity bias

Summary of Today [Part 2]

- The biases can be very complex
- If more than one omitted variable, or omitted variable is correlated with more than one regressor, sign of bias hard to determine
- Measurement error of an independent variable can (and likely does) bias all coefficients in ways that are hard to determine
- Simultaneity bias can also be complicated

Summary of Today [Part 3]

- To deal with these problems, there are some tools we can use
- E.g., Proxy variables [discussed today]
\square We will talk about other tools later, e.g.
- Instrumental variables
- Natural experiments
- Regression discontinuity

In First Half of Next Class

- Before getting to these other tools, will first discuss panel data \& unobserved heterogeneity
- Using fixed effects to deal with unobserved variables
- What are the benefits? [There are many!]
- What are the costs? [There are some...]
- Fixed effects versus first differences
- When can FE be used?
- Related readings: see syllabus

Assign papers for next week...

- Rajan and Zingales (AER 1998)
- Financial development \& growth
- Matsa (JF 2010)
- Capital structure \& union bargaining
- Ashwini and Matsa (JFE 2013)
- Labor unemployment risk \& corporate policy

Break Time

- Let's take our 10-minute break
- We will do presentations when we get back

