Announcements -- Research Proposal

- You can find my detailed comments about your rough draft on Canvas
- Try to come see me before starting final draft if you have questions about comments
- See six example proposals on Canvas
- Final proposal due on May 3
Announcements – Exercise #4

Exercise #4 is due next week

- Please upload to Canvas, Thanks!
Background readings for today

- Roberts-Whited, *Section 6*
- Angrist-Pischke, *Sections 3.3.1-3.3.3*
- Wooldridge, *Section 21.3.5*
Quick review of last lecture on “errors”

Discuss matching

- What it does…
- And what it doesn’t do

Discuss Heckman selection model

Student presentations of “Error” papers
Quick Review [Part 1]

What are 3 data limitations to keep in mind?

- **#1 – Measurement error**; some variables may be measured with error \([e.g.\text{ industry concentration using Compustat}]\) leading to incorrect inferences
- **#2 – Survivorship bias**; entry and exit of obs. isn’t random and this can affect inference
- **#3 – External validity**; our data often only covers certain types of firms and need to keep this in mind when making inferences
Quick Review [Part 2]

- What is $AdjY$ estimator, and why is it inconsistent with unobserved heterogeneity?
 - **Answer** = $AdjY$ demeans y with respect to group; it is inconsistent because it fails to account for how group mean of X’s affect adjusted-Y
 - E.g. “industry-adjust”
 - Diversification discount lit. has similar problem
 - Asset pricing has examples of this [What?]
Quick Review \([Part 3]\)

- Comparing characteristically-adjusted stock returns across portfolios sorted on some other \(X\) is example of \(AdjY\) in AP

 - What is proper way to control for unobserved characteristic-linked risk factors?

 - \textbf{Answer} = Add benchmark portfolio-period FE

\([See\ Gormley\ &\ Matsa\ (2014)]\)
Quick Review [Part 4]

- What is \(\text{AvgE} \) estimator; why is it biased?
 - \textbf{Answer} = Uses group mean of \(y \) as control for unobserved group-level heterogeneity; biased because of measurement error problem
Quick Review \textit{[Part 5]}

- What are two ways to estimate model with two, high-dimensional FE [e.g. firm and industry-year FE]?
 - \textbf{Answer #1}: Create interacted FE and sweep it away with usual within transformation
 - \textbf{Answer #2}: Use iterations to solve FE estimates
Matching – Outline

- Introduction to matching
 - Comparison to OLS regression
 - Key limitations and uses
- How to do matching
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
Matching Methods – Basic Idea [Part 1]

- Matching approach to estimate treatment effect is very intuitive and simple
 - For each treated observation, you find a “matching” untreated observation that serves as the de facto counterfactual
 - Then, compare outcome, y, of treated observations to outcome of matched obs.
Matching Methods – *Basic Idea* [Part 2]

- A bit more formally…
 - For each value of X, where there is both a treated and untreated observation…
 - Match treated observations with $X=X'$ to untreated observations with same $X=X'$
 - Take difference in their outcomes, y
 - Then, use average difference across all the X’s as estimate of treatment effect
Matching Methods – Intuition

What two things is matching approach basically assuming about the treatment?

- **Answer #1** = Treatment isn’t random; if it were, would **not** need to match on X before taking average difference in outcomes

- **Answer #2** = Treatment is random *conditional* on X; i.e. controlling for X, untreated outcome captures the unobserved treated counterfactual
Matching is a “Control Strategy”

- Can think of matching as just a way to control for necessary X’s to ensure CMI strategy necessary for causality holds

What is another control strategy we could use to estimate treatment effect?
Matching and OLS; **not** that different

- **Answer = Regression!**
 - I.e. could just regress y onto indicator for treatment with necessary controls for X to ensure CMI assumption holds
 - E.g. to mirror matching estimator, you could just put in indicators for each value of X as the set of controls in the regression

So, how are matching & regression different?
Matching *versus* Regression

- Basically, can think of OLS estimate as particular weighted matching estimator

 - Demonstrating this difference in weighting can be a bit technical…

 - See Angrist-Pischke Section 3.3.1 for more details on this issue, but following example will help illustrate this…
Matching vs Regression – Example [P1]

Example of difference in weighting...

- First, do simple matching estimate
- Then, do OLS where regress y on treatment indicator and you control for X’s by adding indicators for each value of X

- This is very nonparametric and general way to control for covariates X
- If think about it, this is very similar to matching; OLS will be comparing outcomes for treated and untreated with same X’s
But, even in this example, you’ll get different estimates from OLS and matching.

- Matching gives more weight to obs. with $X=X'$ when there are more treated with that X'.
- OLS gives more weight to obs. with $X=X'$ when there is more variation in treatment [i.e. we observe a more equal ratio of treated & untreated]
Matching vs Regression – Bottom Line

- Angrist-Pischke argue that, in general, differences between matching and OLS are not of much empirical importance

- Moreover, similar to OLS, matching has a serious limitation…
Matching – *Key Limitation [Part 1]*

- What sets matching estimator apart from other estimators like IV, natural experiments, and regression discontinuity?

 - **Answer** = It does not rely on any clear source of exogenous variation!

 - I.e. If OLS estimate of treatment effect is biased, so is a matching estimator of treatment effect!
Matching – *Key Limitation [Part 2]*

- And, we abandoned OLS for a reason...
 - If original treatment isn’t random (i.e. exogenous), it is often difficult to believe that controlling for some X’s will somehow restore randomness
 - E.g. there could be problematic, *unobserved* heterogeneity
 - **Note:** regression discontinuity design is exception
 - Matching estimator suffers same problem!
Matching – *Key Limitation* [Part 3]

- Please remember this!
- Matching does **NOT** and **cannot** be used…
 - To fix simultaneity bias problem
 - To eliminate measurement error bias…
 - To fix omitted variable bias from unobservable variables [*can’t match on what you can’t observe!*]
Matching – So, *what good is it?* [Part 1]

- Prior slides would seem to suggest matching isn’t that useful…
 - Basically just another control strategy that is less dependent on functional form of X
 - Doesn’t resolve identification concerns

- But, there are some uses…
Matching – So, what good is it? [Part 2]

- Can be used…
 - To do robustness check on OLS estimate
 - To better screen the data used in OLS
- Can sometimes have better finite-sample properties than OLS

More about these later…
Matching – Outline

- Introduction to matching
- How to do matching
 - Notation & assumptions
 - Matching on covariates
 - Matching on propensity score
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
First some notation...

- Suppose want to know effect of treatment, d, where $d = 1$ if treated, $d = 0$ if not treated.

- Outcome y is given by…
 - $y(1) = \text{outcome if } d = 1$
 - $y(0) = \text{outcome if } d = 0$

- Observable covariates are $X = (x_1, \ldots, x_k)$
Identification Assumptions

- Matching requires two assumptions in order to estimate treatment effect
 - “Unconfoundedness”
 - “Overlap”
Outcomes $y(0)$ and $y(1)$ are statistically independent of treatment, d, conditional on the observable covariates, X

I.e. you can think of assignment to treatment as random once you control for X
This assumption is **stronger** version of typical CMI assumption that we make. It is equivalent to saying treatment, \(d \), is independent of error \(u \), in following regression

\[
y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + \gamma d + u
\]

Note: This stronger assumption needed in certain matching estimators, like propensity score.
Assumption #2 – Overlap

- For each value of covariates, there is a positive probability of being in the treatment group and in the control group
 - I.e. There will be both treatment and control observations available when match on X
 - Why do we need this assumption?
 - Answer = It would be problematic to do a matching estimator if we didn’t have both treated and untreated observations with the same X!
“Overlap” in practice

- In reality, we don’t have “overlap”
 - E.g. think about continuous variables; observations won’t have exact same X
 - As we’ll see shortly, we end instead use observations with “similar” X in matching

 - This actually causes matching estimator to be biased and inconsistent; but there are ways to correct for this [see Abadie and Imbens (2008)]
Average Treatment Effect (ATE)

- With both assumptions, easy to show that ATE for subsample with $X = X'$ is equal to difference in outcome between treated and control observations with $X = X'$
 - See Roberts and Whited page 68 for proof
 - To get ATE for population, just integrate over distribution X (i.e. take average ATE over all the X's weighting based on probability of X)
Difficulty with **exact** matching

- In practice, difficult to use exact matches when matching on # of X’s (i.e. k) is large
 - May not have both treated and control for each possible combination of X’s
 - This is surely true when any x is continuous (i.e. it doesn’t just take on discrete values)
Matching – *Outline*

- Introduction to matching
- How to do matching
 - Notation & assumptions
 - Matching on covariates
 - Matching on propensity score
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
Matching on Covariates – Step #1

- Select a distance metric, \(||X_i - X_j|| \)
 - It tells us how far apart the vector of \(X \)'s for observation \(i \) are from \(X \)'s for observation \(j \)
 - One example would be Euclidean distance

\[
||X_i - X_j|| = \sqrt{(X_i - X_j) \cdot (X_i - X_j)}
\]
Matching on Covariates – Step #2

- For each observation, \(i \), find \(M \) closest matches (based on chosen distance metric) among observations where \(d \neq d_i \)
 - I.e. for a treated observation (i.e. \(d = 1 \)) find the \(M \) closest matches among untreated observations
 - For an untreated observation (i.e. \(d = 0 \)), find the \(M \) closest matches among treated observations
Before Step #3... some notation

- Define $l_m(i)$ as m^{th} closest match to observation i among obs. where $d \neq d_i$
 - E.g. suppose obs. $i = 4$ is treated [i.e. $d = 1$]
 - $l_1(4)$ would represent the closest untreated observation to observation $i = 4$
 - $l_2(4)$ would be the second closest, and so on

- Define $L_M(i) = \{l_m(i), \ldots, l_M(i)\}$

Just way of labeling M closest obs. to obs. i
Create imputed untreated outcome, $\hat{y}_i(0)$, and treated outcome, $\hat{y}_i(1)$, for each obs. i

\[
\hat{y}_i(0) = \begin{cases}
y_i & \text{if } d_i = 0 \\
\frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 1
\end{cases}
\]

\[
\hat{y}_i(1) = \begin{cases}
y_i & \text{if } d_i = 0 \\
\frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 1
\end{cases}
\]

In words, what is this doing?
Interpretation…

If obs. i was treated, we observe the actual outcome, $y(1)$.

But, we don’t observe the counterfactual, $y(0)$; so, we estimate it using average outcome of M closest untreated observations!

$$
\hat{y}_i(0) = \begin{cases}
y_i & \text{if } d_i = 0 \\
\frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 1
\end{cases}
$$

$$
\hat{y}_i(1) = \begin{cases}
\frac{1}{M} \sum_{j \in L_M(i)} y_j & \text{if } d_i = 0 \\
y_i & \text{if } d_i = 1
\end{cases}
$$
Interpretation…

\[
\hat{y}_i(0) = \begin{cases}
 y_i & \text{if } d_i = 0 \\
 \frac{1}{M} \sum_{j \in M(i)} y_j & \text{if } d_i = 1
\end{cases}
\]

\[
\hat{y}_i(1) = \begin{cases}
 \frac{1}{M} \sum_{j \in M(i)} y_j & \text{if } d_i = 0 \\
 y_i & \text{if } d_i = 1
\end{cases}
\]

And vice versa, if obs. \(i \) had been untreated; we impute unobserved counterfactual using average outcome of \(M \) closest treated obs.
Matching on Covariates – Step #4

- With assumptions #1 and #2, average treatment effect (ATE) is given by:

\[
\frac{1}{N} \sum_{i=1}^{N} [\hat{y}_i(1) - \hat{y}_i(0)]
\]

In words, what is this doing?

Answer = Taking simple average of difference between observed outcome and constructed counterfactual for each observation
Matching – Outline

- Introduction to matching
- How to do matching
 - Notation & assumptions
 - Matching on covariates
 - Matching on propensity score
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
Another way to do matching is to first estimate a propensity score using covariates, X, and then match on it…
Propensity Score, $ps(x)$ [Part 1]

- Propensity score, $ps(x)$, is probability of treatment given X [i.e. $Pr(d = 1 | X)$, which is equal to CEF $E[d|X]$]
 - Intuitive measure…
 - Basically collapses your k-dimensional vector X into a 1-dimensional measure of the probability of treatment i.e. given the X’s
 - Can estimate this in many ways including discrete choice models like Probit and Logit
With unconfoundedness assumption, conditioning on $ps(X)$ is sufficient to identify average treatment effect; i.e.

- I.e. controlling for probability of treatment (as predicted by X) is sufficient

- Can do matching using just $ps(X)$
- Or, can regress y on treatment indicator, d, and add propensity score as control
Matching on $ps(X)$ – Step #1

- Estimate propensity score, $ps(X)$, for each observation i

 - For example, estimate $d = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + u_i$ using OLS, Probit, or Logit

 - Common practice is to use Logit with few polynomial terms for any continuous covariates

 - Predicted value for observation i is its propensity score, $ps(X_i)$
Note: You only need to include X’s that predict treatment, d

- This may be less than full set of X’s
- In fact, being able to exclude some X’s (because economic logic suggests they shouldn’t predict d) can improve finite sample properties of the matching estimate
Matching on $ps(X) – Remaining Steps…$

- Now, use same steps as before, but choose M closest matches using observations with closest propensity score
 - E.g. if obs. i is untreated, choose M treated observations with closest propensity scores
Propensity score – *Advantage # 1*

- Propensity score helps avoid concerns about subjective choices we make with matching

 - As we’ll see next, there are a lot of subjective choices you need to make [e.g. *distance metric*, *matching method*, etc.] when matching on covariates
Propensity score – *Advantage # 2*

- Can skip matching entirely, and estimate ATE using sample analog of

\[
E \left[\frac{(d_i - ps(X_i)) y_i}{ps(X_i)(1 - ps(X_i))} \right]
\]

- See Angrist-Pischke, Section 3.3.2 for more details about why this works
Can get lower standard errors by instead matching on covariates if add more variables that explain \(y \), but don’t necessarily explain \(d \)

- Same as with OLS; more covariates can increase precision even if not needed for identification
- **But**, Angrist and Hahn (2004) show that using \(ps(X) \) and ignoring these covariates can actually result in better finite sample properties
Matching – Outline

- Introduction to matching
- How to do matching
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
Practical Considerations

- There are a lot of practical considerations and choices to make with matching; e.g.,
 - Which distance metric to use?
 - How many matches for each observation?
 - Match with or without replacement?
 - Which covariates X should be used?
 - Use propensity score, and if so, how measure it?
Choice of distance metric [*Part 1*]

- What is downside to simple Euclidean distance metric from earlier?

\[\| X_i - X_j \| = \sqrt{(X_i - X_j)'(X_i - X_j)} \]

- **Answer** = It ignores the potentially different scales of each variable [*which is why it typically isn’t used in practice*]

- Which variables will have more effect in determining best matches with this metric?
Choice of distance metric [*Part 2*]

- Two other possible distance metrics standardize distances using inverse of covariates’ variances and covariances
 - Abadie and Imbens (2006)
 \[
 \|X_i - X_j\| = \sqrt{(X_i - X_j)' \text{diag}(\Sigma^{-1}_X)(X_i - X_j)}
 \]
 - Mahalanobis [*probably most popular*]
 \[
 \|X_i - X_j\| = \sqrt{(X_i - X_j)' (\Sigma^{-1}_X)(X_i - X_j)}
 \]
Should you match based on covariates, or instead match using a propensity score?

- And, if use propensity score, should you use Probit, Logit, OLS, or nonparametric approach?

Unfortunately, no clear answer

- Want whichever is going to be most accurate…
- But, probably should show robustness to several different approaches
And, how many matches? \textit{[Part 1]}

- Again, no clear answer…
- Tradeoff is between bias and precision
 - Using single best match will be least biased estimate of counterfactual, \textit{but} least precise
 - Using more matches increases precision, \textit{but} worsens quality of match and potential bias
Two ways used to choose matches

- “Nearest neighbor matching”
 - This is what we saw earlier; you choose the m matches that are closest using your distance metric

- “Caliper matching”
 - Choose all matches that fall within some radius
 - E.g. if using propensity score, could choose all matches within 1% of observation’s propensity score

Question: What is intuitive advantage of caliper approach?
And, how many matches? [Part 3]

- **Bottom line advice**
 - Best to try multiple approaches to ensure robustness of the findings
 - If adding more matches (or expanding radius in caliper approach) changes estimates, then bias is potential issue and should probably stick to smaller number of potential matches
 - If not, and only precision increases, then okay to use a larger set of matches
Matching with replacement

- Each observation can serve as a match for multiple observations
- Produces better matches, reducing potential bias, but at loss of precision

Matching without replacement
With or without replacement? [Part 2]

- Bottom line advice...
 - Roberts-Whited recommend to do matching with replacement...
 - Our goal should be to reduce bias
 - In matching without replacement, the order in which you match can affect estimates
Which covariates?

- Need all X’s that affect outcome, y, and are correlated with treatment, d [Why?]
 - Otherwise, you’ll have omitted variables!

- But, do not include any covariates that might be affected by treatment
 - Again, same “bad control” problem

Question: What might be way to control for X that could be a “bad control”?

Answer: Use lagged X
Matches for whom?

- If use matches for all observations (as done earlier), you estimate ATE
 - But, if only use and find matches for treated observations, you estimate average treatment effect on treated (ATT)
 - If only use and find matches for untreated, you estimate average treatment effect on untreated (ATU)
Matching – Outline

- Introduction to matching
- How to do matching
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
Testing “Overlap” Assumption

- If only one X or using $ps(X)$, can just plot distribution for treated & untreated
- If using multiple X, identify and inspect worst matches for each x in X
 - If difference between match and observation is large relative to standard deviation of x, might have problem
If there is lack of “Overlap”

- Approach is very subjective…
 - Could try discarding observations with bad matches to ensure robustness
 - Could try switching to caliper matching with propensity score
How might you try to test unconfoundedness assumption?

- Answer = Trick question; you can’t! We do not observe error, u, and therefore can’t know if treatment, d, is independent of it!

- Again, we cannot test whether the equations we estimate are causal!
But, there are other things to try...

- Similar to natural experiment, can do various robustness checks; e.g.
 - Test to make sure timing of observed treatment effect is correct
 - Test to make sure treatment doesn’t affect other outcomes that should, theoretically, be unaffected
- Or, look at subsamples where treatment effect should either be larger or smaller
Matching – Outline

- Introduction to matching
- How to do matching
- Practical considerations
- Testing the assumptions
- Key weaknesses and uses of matching
Weaknesses Reiterated [Part 1]

- As we’ve just seen, there isn’t clear guidance on how to do matching
 - Choices on distance metric, matching approach, # of matches, etc. are subjective
 - Or, what is best way to estimate propensity score? Logit, probit, nonparametric?

- Different researchers, using different methods might get different answers!
Weaknesses Reiterated \([Part 2]\)

- And, as noted earlier, matching is not a way to deal with identification problem
 - Does **NOT** help with simultaneity, unobserved omitted variables, or measurement error
 - Original OLS estimate of regressing \(y\) on treatment, \(d\), and \(X\)'s is similar but weighting observations in particular way
Often see a researcher estimate:

\[y = \beta_0 + \beta_1 d + ps(X) + u \]

- \(d \) = indicator for some non-random event
- \(ps(X) \) = prop. score for likelihood of treatment estimated using some fancy, complicated Logit

Then, researcher will claim:

“Because \(ps(X) \) controls for any selection bias, I estimate causal effect of treatment”
Tangent – Related Problem \textit{[Part 2]}

- Researcher assumes that observable X captures \textbf{ALL} relevant omitted variables
 - I.e. there aren’t any \underline{unobserved} variables that affect y and are correlated with d
 - This is often not true… Remember long list of unobserved omitted factors discussed in lecture on panel data

- \textbf{Just because it seems fancy or complicated doesn’t mean it’s identified!}
Another Weakness – Inference

- There isn’t always consensus or formal method for calculating SE and doing inference based on estimates

- So, what good is it, and when should we bother using it?
Use as a robustness check

- Can use as robustness check to OLS estimation of treatment effect
 - It avoids functional form assumptions imposed by the regression; so, provides a nice sanity check on OLS estimates
 - Angrist-Pischke argue, however, that it won’t find much difference in practice if have right covariates, particularly if researcher uses regression with flexible controls for X
Can use matching to screen sample used in later regression

Ex. #1 – Could estimate propensity score; then do estimation using only sample where the score lies between 10% and 90%

- Helps ensure estimation is done only using obs. with sufficient # of controls and treated
- Think of it as ensuring sufficient overlap
Use as precursor to regression \textit{[Part 2]}

- \textbf{Ex. #2} – Could estimate effect of treatment using only control observations that match characteristics of treated obs.

 \begin{itemize}
 \item E.g. If industry X is hit by shock, select control sample to firms matched to similar industry
 \end{itemize}
Matching – *Practical Advice*

- User-written program, “*psmatch2,*” in Stata can be used to do matching and obtain estimates of standard errors
 - Program is flexible and can do variety of different matching techniques
Summary of Today [Part 1]

- “Matching” is another control method
 - Use to estimate treatment effect in cases where treatment is random after controlling for X
 - Comparable to OLS estimation of treatment effect, just without functional form assumptions
- Besides controlling for X, matching does **NOT** resolve or fix identification problems
Many different ways to do matching; e.g.

- Match on covariates or propensity scores
- Nearest neighbor or caliper matching

Primarily used as robustness test

- If have right covariates, X, and relatively flexible OLS model, matching estimate of ATE will typically be quite similar to OLS
In First Half of Next Class

- Standard errors & clustering
 - Should you use “robust” or “classic” SE?
 - “Clustering” and when to use it

- Limited dependent variables… are Probit, Logit, or Tobit needed?

- Related readings… see syllabus
Assign papers for next week…

- Morse (JFE 2011)
 - Payday lenders

- Colak and Whited (RFS 2007)
 - Spin-offs, divestitures, and investment

 - Credit ratings & sovereign credit ceiling
Break Time

- Let’s take our 10 minute break
- We’ll quickly cover Heckman selection models and then do presentations when we get back
Heckman selection models

- Motivation
- How to implement
- Limitations [i.e., why I don’t like them]
Motivation [Part 1]

- You want to estimate something like...

\[Y_i = \beta X_i + \varepsilon_i \]

- \(Y_i \) = post-IPO outcome for firm \(i \)
- \(X_i \) = vector of covariates that explain \(Y \)
- \(\varepsilon_{i,t} \) = error term
- **Sample** = all firms that did IPO in that year

- What is a potential concern?
Motivation [Part 2]

- **Answer** = certain firms ‘self-select’ to do an IPO, and the factors that drive that choice might cause X to be correlated with $\varepsilon_{i,t}$
 - It’s basically an omitted variable problem!
 - If willing to make some assumptions, can use Heckman two-step selection model to control for this selection bias
How to implement [Part 1]

- Assume to choice to ‘self-select’ [in this case, do an IPO] has following form...

\[
IPO_i = \begin{cases}
1 & \text{if } \gamma Z_i + \eta_i > 0 \\
0 & \text{if } \gamma Z_i + \eta_i \leq 0
\end{cases}
\]

- \(Z_i\) = factors that drive choice [i.e., IPO]
- \(\eta_{i,t}\) = error term for this choice
How to implement [Part 2]

- Regress choice variable (i.e., IPO) onto Z using a Probit model.
- Then, use predicted values to calculate the Inverse Mills Ratio for each observation, \(\lambda_i = \frac{\phi(\gamma Z_i)}{\Phi(\gamma Z_i)} \).
- Then, estimate original regression of \(Y_i \) onto \(X_i \), but add \(\lambda_i \) as a control!

Basically, controls directly for omitted variable; e.g. choice to do IPO.
Limitations [Part 1]

- Model for choice [i.e., first step of the estimation] must be correct; otherwise inconsistent!
- Requires assumption that the errors, ε and η, have a **bivariate normal distribution**
 - Can’t test, and no reason to believe this is true
 [i.e., what is the economic story behind this?]
 - And, if wrong… estimates are inconsistent!
Limitations \textit{[Part 2]}

- Can technically work if Z is just a subset of the X variables \textit{[which is commonly what people seem to do]}, but...

 - But, in this case, all identification relies on non-linearity of the inverse mills ratio \textit{[otherwise, it would be collinear with the X in the second step]}

 - \textbf{But again, this is entirely dependent on the bivariate normality assumption and lacks any economic intuition!}
Limitations [Part 3]

- When Z has variables not in X [i.e., excluded instruments], then could just do IV instead!
 - I.e., estimate $Y_i = \mathbf{bX}_i + IPO_i + \varepsilon_i$ on full sample using excluded IVs as instruments for IPO
 - Avoids unintuitive, untestable assumption of bivariate normal error distribution!