
FIN 620
Emp. Methods in Finance

Professor Todd Gormley

Lecture 10 –  Matching



Background readings for today

n Roberts-Whited, Section 6
n Angrist-Pischke, Sections 3.3.1-3.3.3
n Wooldridge, Section 21.3.5



n Quick review of last lecture on “errors”
n Discuss matching

q What it does…
q And what it doesn’t do

n Discuss Heckman selection model
n Student presentations of “Error” papers

Outline for Today



Quick Review [Part 1]

n What are 3 data limitations to keep in mind?

q #1 – Measurement error; some variables may 
be measured with error [e.g., industry concentration 
using Compustat] leading to incorrect inferences

q #2 – Survivorship bias; entry and exit of obs. 
isn’t random and this can affect inference

q #3 – External validity; our data often only 
covers certain types of firms and need to keep 
this in mind when making inferences



Quick Review [Part 2]

n What is AdjY estimator, and why is it 
inconsistent with unobserved heterogeneity?

q Answer = AdjY demeans y with respect to 
group; it is inconsistent because it fails to account 
for how group mean of X’s affect adjusted-Y

n E.g., “industry-adjust”
n Diversification discount lit. has similar problem
n Asset pricing has examples of this [What?]



Quick Review [Part 3]

n Comparing characteristically-adjusted stock 
returns across portfolios sorted on some 
other X is example of AdjY in AP

q What is proper way to control for unobserved 
characteristic-linked risk factors?

q Answer = Add benchmark portfolio-period FE 
[See Gormley & Matsa (2014)]



Quick Review [Part 4]

n What is AvgE estimator; why is it biased?
q Answer = Uses group mean of y as control for 

unobserved group-level heterogeneity; biased 
because of measurement error problem



Quick Review [Part 5]

n What are two ways to estimate model with 
two, high-dimensional FE [e.g., firm and 
industry-year FE]?

q Answer #1: Create interacted FE and sweep it 
away with usual within transformation

q Answer #2: Use iterations to solve FE estimates 
[i.e., use something like REGHDFE estimator]



n Introduction to matching
q Comparison to OLS regression
q Key limitations and uses

n How to do matching
n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n Matching approach to estimate treatment 
effect is very intuitive and simple

q For each treated observation, you find a 
“matching” untreated observation that 
serves as the de facto counterfactual

q Then, compare outcome, y, of treated 
observations to outcome of matched obs.

Matching Methods – Basic Idea [Part 1]



n A bit more formally…

q For each value of X, where there is both a 
treated and untreated observation…

n Match treated observations with X=X’ to 
untreated observations with same X=X’

n Take difference in their outcomes, y

q Then, use average difference across all the 
X’s as estimate of treatment effect

Matching Methods – Basic Idea [Part 2]



n What two things is matching approach 
basically assuming about the treatment?

q Answer #1 = Treatment isn’t random; if it 
were, would not need to match on X before 
taking average difference in outcomes

q Answer #2 = Treatment is random conditional 
on X; i.e., controlling for X, untreated outcome 
captures the unobserved treated counterfactual

Matching Methods – Intuition



n Can think of matching as just a way to 
control for necessary X’s to ensure CMI 
condition necessary for causality holds

 What is another control strategy we 
could use to estimate treatment effect?

Matching is a “Control Strategy”



n Answer = Regression!
q I.e., could just regress y onto indicator for 

treatment with necessary controls for X to 
ensure CMI assumption holds

n E.g., to mirror matching estimator, you could just 
put in indicators for each value of X as the set of 
controls in the regression

So, how are matching & regression different?

Matching and OLS; not that different



n Basically, can think of OLS estimate as 
particular weighted matching estimator

q Demonstrating this difference in  
weighting can be a bit technical…

n See Angrist-Pischke Section 3.3.1 for  more 
details on this issue, but following example will 
help illustrate this…

Matching versus Regression



n Example of difference in weighting…

q First, do simple matching estimate
q Then, do OLS where regress y on 

treatment indicator and you control for X’s 
by adding indicators for each value of X

n This is very nonparametric and general way to 
control for covariates X

n If think about it, this is very similar to 
matching; OLS will be comparing outcomes for 
treated and untreated with same X’s

Matching vs Regression – Example [P1]



n But, even in this example, you’ll get different 
estimates from OLS and matching

q Matching gives more weight to obs. with X=X’ 
when there are more treated with that X’

q OLS gives more weight to obs. with X=X’ when 
there is more variation in treatment [i.e., we observe 
a more equal ratio of treated & untreated]

Matching vs Regression – Example [P2]



n Angrist-Pischke argue that, in general, 
differences between matching and OLS 
are not of much empirical importance

n Moreover, like OLS, matching has a 
serious limitation…

Matching vs Regression – Bottom Line



n What sets matching estimator apart from 
other estimators like IV, natural 
experiments, and regression discontinuity?

q Answer = It does not rely on any clear   
source of exogenous variation!  

n I.e., If OLS estimate of treatment effect is biased, 
so is a matching estimator of treatment effect!

Matching – Key Limitation [Part 1]



n And we abandoned OLS for a reason…

q If original treatment isn’t random (i.e., exogenous), 
it is often difficult to believe that controlling for 
some X’s will somehow restore randomness

n E.g., there could be problematic, unobserved heterogeneity 
n Note: regression discontinuity design is exception

q Matching estimator suffers same problem!

Matching – Key Limitation [Part 2]



n Please remember this!  
n Matching does NOT and cannot be used…

q To fix simultaneity bias problem
q To eliminate measurement error bias…
q To fix omitted variable bias from unobservable 

variables [can’t match on what you can’t observe!]

Matching – Key Limitation [Part 3]



n Prior slides would seem to suggest 
matching isn’t that useful…

q Basically, it is just another control strategy that 
is less dependent on functional form of X

q Doesn’t resolve identification concerns

n But there are some uses…

Matching – So, what good is it? [Part 1]



n Can be used…

q To do robustness check on OLS estimate
q To better screen the data used in OLS

n Can sometimes have better finite-
sample properties than OLS 

More about these later…

Matching – So, what good is it? [Part 2]



n Introduction to matching
n How to do matching

q Notation & assumptions
q Matching on covariates
q Matching on propensity score

n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n Suppose want to know effect of treatment, 
d, where d = 1 if treated, d = 0 if not treated

n Outcome y is given by…

q y(1) = outcome if d = 1
q y(0) = outcome if d = 0

n Observable covariates are X = (x1,…,xk)

First some notation…



n Matching requires two assumptions in 
order to estimate treatment effect

q “Unconfoundedness”
q “Overlap”

Identification Assumptions



n Outcomes y(0) and y(1) are statistically 
independent of treatment, d, conditional 
on the observable covariates, X
q I.e., you can think of assignment to treatment 

as random once you control for X

Assumption #1 – Unconfoundedness 



n This assumption is stronger version of 
typical CMI assumption that we make

q It is equivalent to saying treatment, d, is 
independent of error u, in following regression

n Note: This stronger assumption is needed in certain 
matching estimators, like propensity score

“Unconfoundedness” explained…

0 1 1 ... k ky x x d ub b b g= + + + + +



n For each value of covariates, there is a 
positive probability of being in the 
treatment group and in the control group
q I.e., There will be both treatment and control 

observations available when match on X
q Why do we need this assumption?

n Answer = It would be problematic to do a matching 
estimator if we didn’t have both treated and 
untreated observations with the same X!

Assumption #2 – Overlap 



n In reality, we often don’t have “overlap”
q E.g., think about continuous variables; 

observations won’t have exact same X
q As we’ll see shortly, we end instead use 

observations with “similar” X in matching

n This causes matching estimator to be biased and 
inconsistent; but there are ways to correct for this 
[see Abadie and Imbens (2008)]

“Overlap” in practice 



n With both assumptions, easy to show that 
ATE for subsample with X = X’ is equal 
to difference in outcome between treated 
and control observations with X = X’

q See Roberts and Whited page 68 for proof
q To get ATE for population, just integrate over 

distribution X (i.e., take average ATE over all 
the X’s weighting based on probability of X)

Average Treatment Effect (ATE)



n In practice, difficult to use exact matches 
when matching on # of X’s (i.e., k) is large

q May not have both treated and control for 
each possible combination of X’s

q This is surely true when any x is continuous 
(i.e., it doesn’t just take on discrete values)

Difficulty with exact matching



n Introduction to matching
n How to do matching

q Notation & assumptions
q Matching on covariates
q Matching on propensity score

n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n Select a distance metric, ||Xi – Xj||

q It tells us how far apart the vector of X’s for 
observation i are from X’s for observation j

q One example would be Euclidean distance

Matching on Covariates – Step #1  

( ) ( )'
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n For each observation, i, find M closest 
matches (based on chosen distance metric) 
among observations where d ≠ di 

q I.e., for a treated observation (i.e., d = 1) find the 
M closest matches among untreated observations

q For an untreated observation (i.e., d = 0), find the 
M closest matches among treated observations

Matching on Covariates – Step #2  



n Define lm(i) as mth closest match to 
observation i among obs. where d ≠ di

q E.g., suppose obs. i =4 is treated [i.e., d =1]

n l1(4) would represent the closest                              
untreated observation to observation i = 4

n l2(4) would be the second closest, and so on

n Define LM(i) = {lm(i),…, lM(i)}

Before Step #3… some notation

Just way of  labeling M 
closest obs. to obs. i 



n Create imputed untreated outcome,         , 
and treated outcome,         , for each obs. i

Matching on Covariates – Step #3

In words, what 
is this doing?
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Interpretation…

If  obs. i was treated, we observe 
the actual outcome, y(1)
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But we don’t observe the 
counterfactual, y(0); so, we 
estimate it using average 
outcome of  M closest 
untreated observations!



Interpretation…
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And vice versa, if  obs. 
i  had been untreated; 
we impute unobserved 
counterfactual using 

average outcome of  M 
closest treated obs.



n With assumptions #1 and #2, average 
treatment effect (ATE) is given by:

Matching on Covariates – Step #4

In words, what is this doing?
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Answer = Taking simple average of  difference 
between observed outcome and constructed 
counterfactual for each observation



n Introduction to matching
n How to do matching

q Notation & assumptions
q Matching on covariates
q Matching on propensity score

n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n Another way to do matching is to first 
estimate a propensity score using 
covariates, X, and then match on it…

Matching on propensity score



n Propensity score, ps(x), is probability of 
treatment given X [i.e., Pr(d = 1|X), 
which is equal to CEF E[d|X]]

q Intuitive measure…

n Basically collapses your k-dimensional vector 
X into a 1-dimensional measure of the 
probability of treatment i.e., given the X’s 

n Can estimate this in many ways including 
discrete choice models like Probit and Logit 

Propensity Score, ps(x) [Part 1]



n With unconfoundedness assumption, 
conditioning on ps(X) is sufficient to 
identify average treatment effect; i.e. 

q I.e., controlling for probability of treatment 
(as predicted by X) is sufficient

n Can do matching using just ps(X)
n Or can regress y on treatment indicator, d, and add 

propensity score as control

Propensity Score, ps(x) [Part 2]



n Estimate propensity score, ps(X), for 
each observation i

q For example, estimate                                     
using OLS, Probit, or Logit

n Common practice is to use Logit with few 
polynomial terms for any continuous covariates

q Predicted value for observation i is its 
propensity score, ps(Xi)

 

Matching on ps(X) – Step #1

0 1 1 ... k k id x x ub b b= + + + +



n Note: You only need to include X’s 
that predict treatment, d

q This may be less than full set of X’s
q In fact, being able to exclude some X’s 

(because economic logic suggests they 
shouldn’t predict d) can improve finite 
sample properties of the matching estimate 

 

Tangent about Step #1



n Now, use same steps as before, but 
choose M closest matches using 
observations with closest propensity score 

q E.g., if obs.  i is untreated, choose M treated 
observations with closest propensity scores

 

Matching on ps(X) – Remaining Steps…



n Propensity score helps avoid concerns about 
subjective choices we make with matching 

q As we’ll see next, there are a lot of subjective 
choices you need to make [e.g., distance metric, 
matching method, etc.] when matching on covariates

Propensity score – Advantage # 1



n Can skip matching entirely, and estimate 
ATE using sample analog of

q See Angrist-Pischke, Section 3.3.2 for more 
details about why this works

Propensity score – Advantage # 2

( )
( )
( )

( ) 1 ( )
i i i

i i

d ps X y
E
ps X ps X

é ù-
ê ú-ë û



n Can get lower standard errors by instead 
matching on covariates if add more variables 
that explain y, but don’t necessarily explain d

q Same as with OLS; more covariates can increase 
precision even if not needed for identification 

q But Angrist and Hahn (2004) show that using 
ps(X) and ignoring these covariates can result in 
better finite sample properties

But there is a disadvantage (sort of)
?



n Introduction to matching
n How to do matching
n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n There are a lot of practical considerations 
and choices to make with matching; e.g.,

q Which distance metric to use?
q How many matches for each observation?
q Match with or without replacement?
q Which covariates X should be used?
q Use propensity score, and if so, how measure it?

Practical Considerations



n What is downside to simple Euclideun 
distance metric from earlier?

q Answer = It ignores the potentially 
different scales of each variable [which is 
why it typically isn’t used in practice]

n Which variables will have more effect in 
determining best matches with this metric?

Choice of distance metric [Part 1]

( ) ( )'

i j i j i jX X X X X X- = - -



n Two other possible distance metrics 
standardize distances using inverse of 
covariates’ variances and covariances

q Abadie and Imbens (2006)

q Mahalanobis [probably most popular]

Choice of distance metric [Part 2]
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n Should you match based on covariates, or 
instead match using a propensity score?
q And, if use propensity score, should you use 

Probit, Logit, OLS, or nonparametric approach? 

n Unfortunately, no clear answer
q Want whichever is going to be most accurate…
q But probably should show robustness to        

several different approaches

Choice of matching approach



n Again, no clear answer…
n Tradeoff is between bias and precision

q Using single best match will be least biased 
estimate of counterfactual, but least precise

q Using more matches increases precision, but 
worsens quality of match and potential bias

And how many matches? [Part 1]



n Two ways used to choose matches

q “Nearest neighbor matching”
n This is what we saw earlier; you choose the m matches 

that are closest using your distance metric

q “Caliper matching”
n Choose all matches that fall within some radius
n E.g., if using propensity score, could choose all 

matches within 1% of observation’s propensity score

And how many matches? [Part 2]

Question: What is intuitive advantage of  caliper approach?



n Bottom line advice

q Best to try multiple approaches to ensure 
robustness of the findings

n If adding more matches (or expanding radius 
in caliper approach) changes estimates, then 
bias is potential issue and should probably 
stick to smaller number of potential matches

n If not, and only precision increases, then okay 
to use a larger set of matches

And how many matches? [Part 3]



n Matching with replacement

q Each observation can serve as a match 
for multiple observations

q Produces better matches, reducing 
potential bias, but at loss of precision

n Matching without replacement

With or without replacement? [Part 1]



n Bottom line advice…

q Roberts-Whited recommend to do 
matching with replacement…

n Our goal should be to reduce bias
n In matching without replacement, the order in 

which you match can affect estimates

With or without replacement? [Part 2]



n Need all X’s that affect outcome, y, and 
are correlated with treatment, d [Why?]
q Otherwise, you’ll have omitted variables!

n But do not include any covariates              
that might be affected by treatment
q Again, same “bad control” problem

Which covariates?

Question: What might be way to control 
for X that could be a “bad control”?

Answer:  
Use lagged X



n If use matches for all observations         
(as done earlier), you estimate ATE
q But, if only use and find matches for 

treated observations, you estimate average 
treatment effect on treated (ATT)

q If only use and find matches for 
untreated, you estimate average treatment 
effect on untreated (ATU)

Matches for whom?



n Introduction to matching
n How to do matching
n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n If only one X or using ps(X), can just 
plot distribution for treated & untreated 

n If using multiple X, identify and inspect 
worst matches for each x in X
q If difference between match and 

observation is large relative to standard 
deviation of x, might have problem

Testing “Overlap” Assumption



n Approach is very subjective…

q Could try discarding observations with 
bad matches to ensure robustness

q Could try switching to caliper matching 
with propensity score

If there is lack of “Overlap”



n How might you try to test 
unconfoundedness assumption?

q Answer = Trick question; you can’t! We 
do not observe error, u, and therefore can’t 
know if treatment, d, is independent of it!

q Again, we cannot test whether the 
equations we estimate are causal! 

Testing “Unconfoundedness”



n Like natural experiment, can do 
various robustness checks; e.g. 

q Test to make sure timing of observed 
treatment effect is correct

q Test to make sure treatment doesn’t 
affect other outcomes that should, 
theoretically, be unaffected

n Or look at subsamples where treatment 
effect should either be larger or smaller

But there are other things to try…



n Introduction to matching
n How to do matching
n Practical considerations
n Testing the assumptions
n Key weaknesses and uses of matching

Matching – Outline



n As we’ve just seen, there isn’t clear 
guidance on how to do matching

q Choices on distance metric, matching 
approach, # of matches, etc. are subjective

q Or what is best way to estimate propensity 
score? Logit, Probit, nonparametric?

n Different researchers, using different 
methods might get different answers!

Weaknesses Reiterated [Part 1]



n And, as noted earlier, matching is not a 
way to deal with identification problem

q Does NOT help with simultaneity, unobserved 
omitted variables, or measurement error

q Original OLS estimate of regressing y on 
treatment, d, and X’s is similar but weighting 
observations in particular way

Weaknesses Reiterated [Part 2]



n Often see a researcher estimate:

q d = indicator for some non-random event
q ps(X) = prop. score for likelihood of treatment 

estimated using some fancy, complicated Logit

n Then, researcher will claim:

 “Because ps(X) controls for any selection bias, 
I estimate causal effect of treatment”

Tangent – Related Problem

0 1 ( )y d ps X ub b= + + +

What is wrong 
with this claim?



n Researcher assumes that observable X 
captures ALL relevant omitted variables

q I.e., there aren’t any unobserved variables                   
that affect y and are correlated with d 

q This is often not true…  Remember long               
list of unobserved omitted factors discussed               
in lecture on panel data

n Just because it seems fancy or 
complicated doesn’t mean it’s identified!

Tangent – Related Problem [Part 2]



n There isn’t always consensus or formal 
method for calculating SE and doing 
inference based on estimates

n So, what good is it, and when 
should we bother using it?

Another Weakness – Inference 



n Can use as robustness check to OLS 
estimation of treatment effect

q It avoids functional form assumptions 
imposed by the regression; so, provides a 
nice sanity check on OLS estimates

n Angrist-Pischke argue, however, that it won’t 
find much difference in practice if have right 
covariates, particularly if researcher uses 
regression with flexible controls for X

Use as a robustness check



n Can use matching to screen sample 
used in later regression

q Ex. #1 – Could estimate propensity score; 
then do estimation using only sample 
where the score lies between 10% and 90%

n Helps ensure estimation is done only using obs. 
with sufficient # of controls and treated

n Think of it as ensuring sufficient overlap

Use as precursor to regression [Part 1]



q Ex. #2 – Could estimate effect of 
treatment using only control observations 
that match characteristics of treated obs.

n E.g., If industry X is hit by shock, select control 
sample to firms matched to similar industry

Use as precursor to regression [Part 2]



n User-written program, “psmatch2,” in 
Stata can be used to do matching and 
obtain estimates of standard errors

q Program is flexible and can do variety of 
different matching techniques

Matching – Practical Advice 



Summary of Today [Part 1]

n “Matching” is another control method

q Use to estimate treatment effect in cases where 
treatment is random after controlling for X

q Comparable to OLS estimation of treatment 
effect, just without functional form assumptions

n Besides controlling for X, matching does 
NOT resolve or fix identification problems



Summary of Today [Part 2]

n Many ways to do matching; e.g.

q Match on covariates or propensity scores
q Nearest neighbor or caliper matching

n Primarily used as robustness test

q If have right covariates, X, and relatively 
flexible OLS model, matching estimate of 
ATE will typically be quite like OLS



In First Half of Next Class

n Standard errors & clustering
q Should you use “robust” or “classic” SE?
q “Clustering” and when to use it

n Limited dependent variables…                         
are Probit, Logit, or Tobit needed?

n Related readings… see syllabus



Assign papers for next week…

n Morse (JFE 2011)

q Payday lenders

n Colak and Whited (RFS 2007)

q Spin-offs, divestitures, and investment

n Almeida, et al (JF 2017)

q Credit ratings & sovereign credit ceiling



Break Time

n Let’s take our 10-minute break
n We’ll quickly cover Heckman selection models 

and then do presentations when we get back



n Motivation
n How to implement
n Limitations [i.e., why I don’t like them]

Heckman selection models



n You want to estimate something like…

q Yi = post-IPO outcome for firm i
q Xi = vector of covariates that explain Y
q εi,t = error term
q Sample = all firms that did IPO in that year

n What is a potential concern?

Motivation [Part 1]

  Yi = bX i + ε i



n Answer = certain firms ‘self-select’ to 
do an IPO, and the factors that drive 
that choice might cause X to be 
correlated with εi,t 

q It’s basically an omitted variable problem!
q If willing to make some assumptions, 

can use Heckman two-step selection 
model to control for this selection bias

Motivation [Part 2]



n Assume choice to ‘self-select’ [in this case, 
do an IPO] has following form…

q Zi = factors that drive choice [i.e., IPO]
q ηi,t = error term for this choice

How to implement [Part 1]

  
IPOi =

1  if    γ Zi +ηi > 0

0  if    γ Zi +ηi ≤ 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



n Regress choice variable (i.e., IPO) onto 
Z using a Probit model

n Then, use predicted values to calculate 
the Inverse Mills Ratio for each 
observation, λi = ϕ(γZi)/Φ(γZi)

n Then, estimate original regression of Yi 
onto Xi, but add λi as a control!

How to implement [Part 2]

Basically, controls directly for omitted 
variable; e.g., choice to do IPO



n Model for choice [i.e., first step of the estimation] 
must be correct; otherwise inconsistent!

n Requires assumption that the errors, ε and η, 
have a bivariate normal distribution

q Can’t test, and no reason to believe this is true  
[i.e., what is the economic story behind this?]

q And, if wrong… estimates are inconsistent!

Limitations [Part 1]



n Can technically work if Z is just a subset of 
the X variables [which is commonly what people 
seem to do], but…

q But, in this case, all identification relies on non-
linearity of the inverse mills ratio [otherwise, it 
would be collinear with the X in the second step]

q But again, this is entirely dependent on the 
bivariate normality assumption and lacks 
any economic intuition!

Limitations [Part 2]



n When Z has variables not in X [i.e., excluded 
instruments], then could just do IV instead!

q I.e., estimate                                    on full sample 
using excluded IVs as instruments for IPO

q Avoids unintuitive, untestable assumption of 
bivariate normal error distribution!

Limitations [Part 3]

  Yi = bX i + IPOi + ε i


